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Chapter 1

Preliminaries

Throughout these notes we will fix a field F = R or C we will work with a vector
space over this field.

Definition 1. Let X be a vector space A ⊂ X. A is absorbing if for all x ∈ X
there is r > 0 s.t. for all s ∈ [0, r] one has rx ∈ A.

Question 1. If X is a vector space and A ⊂ X does it follow that there is a
convex subset of A that contains 0?

Definition 2. Let X be a vector space and A ⊂ X. A is balanced if for all
x ∈ A, λ ∈ R s.t. |λ| ≤ 1 one has λx ∈ A.

For the case F = R being balanced means that for all x ∈ A one has
[−x, x] ⊂ A. On the other hand if F = C then being balanced means that for
all x ∈ A one has Dx ⊂ A where D = {z ∈ C : |z| ≤ 1}.

Definition 3. Let X be a vector space and A ⊂ X. We say that A is convex
if for all x, y ∈ A one has λx+ (1− λ)y ∈ A for 0 ≤ λ ≤ 1.

Definition 4. Let X be a vector space and A ⊂ X. The set of all convex
combinations of A is called the convex hull of A and denote it by convA.

We can write

convA = {
n∑

i=1

λixi : xi ∈ A and λi ≥ 0 such that

n∑
i=1

λi = 1}.

Definition 5. Let X be a vector space and A ⊂ X. A is called absolutely
convex if for all x, y ∈ A and λ, µ ∈ R with |λ|+ |µ| = 1 one has λx+ µy ∈ A.

Exercise 1. A set A ⊂ X is absolutely convex iff it is convex and balanced iff
it is convex and origin symmetric.

Definition 6. Let Ω be a set. A topology τ on Ω is a collection of subset sof Ω
which is closed under arbitrary unions, finite intersections, and contains ∅ and
Ω.
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Elements of τ are called open sets. A set B ⊂ A is called closed if Ac is
open.

Definition 7. Let Ω be a topological space and x ∈ Ω. Let A ⊂ Ω. If there
exists and open set N such that x ∈ N ⊂ A we say that A is a neighbourhood
of x and x is an interior point of A.

We denote by Nx the set of all neighbourhoods of x. N ∈ Nx means that N
is a neighbourhood of x. A set A is open iff for every x ∈ A there exists N ∈ Nx

such that N ⊂ A.

Definition 8. The interior of A, denoted by intA is the set of interior points
of A which is the largest open set contained in A.

Definition 9. The closure of A, denoted by A is the set of all points x such
that for all B ∈ Nx one has that B ∩ A is non-empty. A is the smallest closed
set containing A.

We note that intAc = (A)c and then define the boundary of A to be ∂A =
A− intA.

Definition 10. Let x ∈ Ω. A subset B of Nx is called a base of neighbourhoods
if for all U ∈ Nx if there exists V ∈ B such that V ⊂ U .

One has that U ∈ Nx iff U is subset of some V ∈ B. A base is not unique.
A set A is open iff for all x ∈ A, x has a base neighbourhood which is contained
in A.

Definition 11. A topology is first countable if there exists a countable base at
every point.

Definition 12. Γ is a directed set if Γ is equipped with a relation ≤ which is
reflexive, transitive, and every two elements in Γ have a common successor. A
net x : Γ −→ Ω is a function from a directed set to Ω. We write xα = x(α).

Reminder, a sequence is just a net where Γ = N.

Definition 13. Let (xα)α∈Γ be a net and α0 be a fixed index. A tail of the net
(xα)α≥α0

.

Definition 14. Let Ω be a topological space and x ∈ Ω. Let (xα) be a net in
Ω. We say that (xα) converges to x and write xα −→ x if every neighbourhood
of x contains a tail of (xα).

We can recover neighbourhoods from convergence. A set U is a neighbour-
hood of x ∈ Ω if every net converging to x has a tail contained in U . If the
topology is first countable then it suffices to consider sequences.

Example 1. Let Ω be a set and d be a metric on Ω. We say that a subset A
of τ is open if for all x ∈ A there is r > 0 such that B(x, r) ⊂ A.
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This is a topology, called the metric topology. The open balls are a base,
but in particular it is first countable since we can get a countable sub-base of
balls.

Definition 15. If τ and σ are two topologies on Ω, we say that τ is weaker
than σ if τ ⊂ σ.

For convergence, if xα −→σ x then xα −→τ x.

Definition 16. Let Ω be a topological space and A ⊂ Ω. The induced topology
on A is defined by τA = {A ∩O : O ∈ τ}.

Convergence is preserved when passing to the induced topology. That is,
when we have A ⊂ Ω and (xα) ⊂ A then (xα) −→τA x iff (xα) −→τ x.

Definition 17. Let Ω be a topological space and x ∈ Ω. (xα) a net in Ω. x
is an accumulation point of (xα) if for all U ⊂ Nx and for all α there is β ≥ α
such that xβ ∈ U .

Having an accumulation point means that every tail of (xα) has a subnet
that conveges to x.

Definition 18. A topological space Ω is compact if every open cover of Ω has
a finite subcover. Equivalently, every net in Ω has an accumulation point.

If Ω is a topological space and A ⊂ Ω we say that A is compact if it is
compact with respect to the induced topology.

Definition 19. A topological space Ω is Hausdorff if for all x ̸= y there is
V ∈ NX and U ∈ Ny such that U ∩ V = ∅. Equivalenty, nets have unique
limits.

This means that if xα −→ x and xα −→ y then x = y.

Definition 20. Let f : Ω1 −→ Ω2 where Ω1 and Ω2 are topological spaces.
f is continuous if for all open sets U ⊂ Ω2 one has f−1(U) is open in Ω1.
Equivalenty, for all x ∈ Ω1 and for all V ∈ Nf(x) there is U ∈ x such that
f(U) ⊂ V . Equivalenty, if xα −→ x in Ω1 then f(xα) −→ f(x) in Ω2.

If f : Ω1 −→ Ω2 is contiunuous and K ⊂ Ω is a compact set, then f(K) is
again compact.

Definition 21. Let Ω1 and Ω2 be two topological spaces. We define the product
topology on Ω1 × Ω2 by (xα, yα) −→ (x, y) in Ω1 × Ω2 if xα −→ x in Ω1 and
yα −→ y in Ω2

We call this topology the topology of coordinate-wise convergence. Equiva-
lently we can consider the following construction. Define maps p1 : Ω1×Ω2 −→
Ω1 and p2 : Ω1 × Ω2 −→ Ω2 to be projections. The product topology is the
weakest topology on Ω1×Ω2 whcih makes btoh p1 and p2 continuous (this exists
by either considering the intersection of all topologies or by Zorn’s lemma). For
x ∈ Ω1 and y ∈ Ω2 take U ∈ Nx and v ∈ Ny. Then {U × V : U ∈ Nx, v ∈ Ny}
is a base of neighbourhoods for the product topology for (x, y).
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Definition 22. Let (Ωα) be a family of topological spaces. Consider the Cartes-
tian product

Ω =
∏
α∈Γ

Ωα = {f : Γ −→
⋃
α∈Γ

Ωα : ∀α ∈ Ω f(α) ∈ Ωα}.

For a net (fα) in Ω and f ∈ Ω we sauy that fα −→ f if for all δ ∈ Γ one has
fα(δ) −→ f(δ).

This is the topology of point-wise convergence. Equivalently this the the
least topology that makes all coordinate projections continuous. For base neigh-
bourhoods. Fix f ∈ Ω and a finite collection of γ1, . . . , γn. For each i = 1, . . . , n
pick some Ui ∈ Nf(x) in Ωγi . Put W = {g ∈ Ω : ∀i = 1, . . . , n g(δi) ∈ Ui}. Set
of this form, form a base of the product topology.

Theorem 1. The product of a family of compact topological spaces is compact.

Proof. Omitted.

1.1 Topological Vector Spaces

Definition 23. X is a topological vector space if it is a vector and and a
topological space such that addition and scalar multiplication are continuous.
That is, addition X × X −→ X and scalar multiplcation F × X −→ X are
continuous (where F has the usual topology).

In the language of nets, if xα −→ x and yα −→ y then xα + yα −→ x + y.
Similarly if xα −→ x and λα −→ λ then λαxα −→ λx. Let X be a topological
vector space. Fix y ∈ X. Consider f : X −→ X defined by f(x) = x+ a, called
the shift operator. By the definition, f is continuous and f−1(x) = x − a is
also continuous. Thus, f is a homeomorphism. If U is a neighbourhood of x
then f(U) = U + a is a neighbourhood of x+ y. Therefore, for every x one has
Nx = {x + U : U ∈ N0}, that is, neighbourhoods of any point are determined
by the neighbourhoods at 0. This means that N0 determines the underlying
topology. In particular the topology is first countable iff N0 has a countable
base. Similarly for λ ∈ F one has x −→ λx is a homeomorphism. If U is open
then λU is open. If U ∈ N0 then λU ∈ N0. This underlying topology is called
a linear topology.

Exercise 2. X is Hausdorff iff
⋂
N0 = {0}.

Exercise 3. The product of a family of topological vector spaces is again a
topological vector space.

Example 2. A semi-normed space is a vector space equipped with a function
ρ : X −→ R≥0 such that ρ(λx) = |λ| ρ(x), and ρ(x + y) ≤ ρ(x) + ρ(y). Such a
function is called a semi-norm. If ρ(x) = 0 implies x = 0 then ρ is called a norm.
(This means that the kernel of ρ is {0}). We prove that every semi-normed space
is a topological vector space in the following Lemma.
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First remember that we can define our topology of the semi-normed space
two ways. Either through convergence, that is xα −→ x if ρ(x − xα) −→ 0 in
R, or we can define the closed balls to be

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}

and then
{B(x, r) : r > 0}

is a base of the topology at x.

Lemma 2. Every semi-normed space is a topological vector space, where the
topology is generated by the open balls or by convergence.

Proof. Suppose that xα −→ x and yα −→ y. Then ρ(xα − x) −→ 0 and
ρ(yα − y) −→ 0 and thus

ρ((xα + yα)− (x+ y)) ≤ ρ(xα − x) + ρ(yα − y) −→ 0,

hence xα + yα −→ x+ y. Further if λα −→ λ and xα −→ x then ρ(xα − x) −→
which implies that

ρ(λαxα−λx) = ρ(λαxα+−λαx+λαx−λx) ≤ ρ(λαxα−λαx)+ρ(λαx−λx) = |λα| ρ(xα−x)+|λα − λ| ρ(x) −→ 0,

so λαxα −→ λx.

Now we have the following fact:

Lemma 3. ker ρ is a subspace.

Proof. if x, y ∈ ker ρ then ρ(x) = 0, ρ(y) = 0. Then ρ(x+ y) ≤ ρ(x) + ρ(y) = 0
so ρ(x+ y) = 0, so x+ y ∈ ker ρ. Similarly if x ∈ ker ρ then λx ∈ ker ρ.

This means that ker ρ = B(0, 0) ⊂ B(0, r) for every r ≥ 0 and so essentially
balls are absolutely huge. One can write ker ρ =

⋂
r>0 B(0, r) =

⋂
N0. One has

from this that a semi normed space is Hausdorff iff ρ is a norm. Now we will
show how to construct a norm from a semi-norm. If X is a vector space then
X/ ker ρ is a vector space. For x ∈ X one has x = x+ ker ρ. One has then that
ρ is constant on each equivalence class.

Proof. Suppose that x ∼ y, then x − y ∈ ker ρ so ρ(x − y) = 0. Then ρ(x) =
ρ(x − y + y) ≤ ρ(x − y) + ρ(y) = ρ(y). This implies that rho(x) ≤ ρ(y), by
symmetry we conclude that ρ(x) = ρ(y).

For an equivalence class x put ∥x∥ = ρ(x). This is well defined by the
previous remark.

Exercise 4. ∥·∥ is a norm on X/ ker ρ.

Fix a vector space. For each linear operator T : X −→ Y where Y is a
normed space one can define a semi-norm on X via ρ(x) = ∥Tx∥.
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Exercise 5. This is a semi-norm on X.

Every semi-nrom arises this way. Let ρ be a semi-norm arising this way.
Put Y = X/ ker ρ. This a normed space. Let π : X −→ Y be the quotient
map. Then for each x ∈ X one has ρ(x) = ∥x∥ = ∥Qx∥. This a correspondence
between semi-norms on X and linear operators T : X −→ Y.

Example 3. Let (Ω, A, µ) be a measure space. Define L0(µ) to be the space
of all (equivalence classes) of measurable functions. For a net (fα) in L0(µ) one
has that (fα) −→µ f (convergence in measure) if for all ε > 0 there is α0 such
that for all α ≥ α0 then µ(|f − fα| > ε) < ε. This convergence corresponds to
a topology.

For every ε > 0 let Uf,ε = {g ∈ L0(µ) : µ(|f − g| > ε) < ε}. These sets, as
ε > 0, form a base of the neighbourhoods for f . This topology is linear and if
fα −→µ f and gα −→µ g then fα + gα −→µ f + g. If fα −→µ f and λα −→ λ
then λαfα −→µ λf.

Example 4. Almost everywhere convergence is not topological!

For every topological convergence, a sequence (xn) convergence to x iff every
subsequence (xnr

) has a further subsequence (xnrl
) converging to x. In regards

to Example 4 consider L0[0, 1]. For n ∈ N let rn =
∑n

k=1
1
k . Then 0 ≤ rn −→

rn+1 −→ ∞. Let xn = χAn
where An = [rn, rn+1] mod 1. This is called the

“walking ghost” or “type-writer sequence”. Then we note that (xn) does not
converge to 0 a.e., but on the other hand every subsequence of (xn) has a further
subsequence that converges to 0 a.e.

We remark on point-wise convergence. Consider functions on [0, 1], F [0, 1] =
R[0,1]. We equip F with point-wise convergence. The base neighbourhoods are
given by choosing t1, . . . tn ∈ [0, 1] and considering an ε neighbourhood of f(ti)
where f ∈ F [0, 1]. Consider the set of all g ∈ F [0, 1] such that |f(ti)− g(ti)| < ε
for all i = 1, . . . , n. Denote this set by Vε,t1,...,tn . Then Vε,t1,...,tn is a base
neighbourhood for f .

Example 5. Let X be a Banach space. A net (xα) ∈ X converges weakly to
x if f(xα) −→ x for every f ∈ X∗. This convergence corresponds to the weak
topology w on X.

This topology is the least topology that makes all f ∈ X∗ continuous. Then
(X,w) is a topological vector space. If xα −→ x and yα −→ y then for every
f ∈ X∗, then f(xα) −→ f(x) and f(yα) −→ f(y), then f(xα + yα) = f(xα) +
f(yα) −→ f(x)+ f(y) = f(x+ y). Similarly, if xα −→ x and λα −→ λ ∈ F then
λαxα −→ λx.

One clearly has that the weak topology on X is weaker than the norm
topology on X. If xα −→∥·∥ 0 then ∥xα∥ −→ 0 then for each f ∈ X∗ one has
|f(xα)| ≤ ∥f∥ ∥x∥ −→ 0, so f(xα) −→ 0 so xα −→ 0.

Example 6. Let X = ℓp, 1 < p < ∞ and consider X∗ = ℓq where q = p∗.
Consider (en) the standard unit basis of X. Then ∥en∥ = 1 for all n, so (en)

7



does not converge to zero in norm. But we claim that en −→w 0. If f ∈ X∗ = ℓq.

Then f = (fi) and ∥f∥ℓq = (
∑∞

i=1 |fi|
q
)
1/q

, so
∑

|fi|q converges, so fi −→ 0,

but f(en) = fn −→ 0.

Let X be a Banach space. Consider X∗. This is again a Banach space. On
X∗ we have the norm topology and the weak topology. For a net (fα) ∈ X∗ we
have that fα −→w f if ∀φ ∈ X∗∗ one has φ(fα) −→ φ(f).

Definition 24. We say that (fα) converges to f in weak* if fα(x) −→ f(x) for
all x ∈ X.

Recall we have the isometric embedding of X −→ X∗∗ given by j(x) = x̂
where x̂(f) = f(x). weak convergence is witnessed by all elements of X∗∗.
weak* convergence is only witnessed by those elements of X∗∗ which come from
X. So this implies that if fα −→w f then fα −→w∗ f . One has that norm
convergence implies weak convergence which implies weak* convergence. If X
is reflexive then our inclusion map is onto, and thus X = X∗∗, so weak = weak*
(on X∗).

Example 7. Let X = c0. Then X∗ = ℓ1 and X∗∗ = ℓ∞. Let (fn) be the
standard unit basis in ℓ1. Then (fn) does not converge to zero weakly because
1 ∈ ℓ∞ has 1(fn) = 1 ̸−→ 0. But each fn converges to zero in weak*. For each
x ∈ c0 one has fn(x) = (the n-th component of x)−→ 0 because x ∈ c0, so
w ̸= w∗.

Each f ∈ X∗ is a function from X to F . One has X∗ ⊂ FX . We have w∗

convergence on X∗ is the restriction to X∗ of the pointwise convergence on FX .
For each ε > 0 fix a finite set x1, . . . , xn ∈ X. Then the sets Vε,x1,...,xn

= {f ∈
X∗ : |f(xi)| < ε ∀i} form a base of neighbours of zero for (X∗, w∗). For weak
topology, we can just flip vectors with functions. Fix ε > 0 and f1, . . . , fn ∈ X∗.
Then Uε,f1,...,fn = {x ∈ X : |fi(x)| < ε ∀i} form a base of neighbourhoods of
zero for (X,w).

Lemma 4. Let X be a Banach space. If xn −→w 0 in X then (xn) is norm
bounded. If (fn) −→w∗ 0 in X∗ then (fn) is norm bounded.

Proof. Suppose that fn −→w∗ 0. Then for each x ∈ X we have fn(x) −→ 0, so
(fn(x)) is bounded for all x ∈ X. Then by the Uniform Boundedness Principle
we conclude that (fn) is norm bounded.

Now suppose that xn −→w 0. For each f ∈ X∗ one has f(xn) −→ 0
so (f(xn)) is bounded. This is precisely (x̂n(f)) and thus (x̂n) is point-wise
bounded. Thus by Uniform Boundedness Principle one has (x̂n) is norm bounded
in X∗∗. Thus there is M > 0 such that for all n M ≥ ∥x̂n∥ = ∥xn∥. Thus (xn)
is bounded in X.

Theorem 5. Let X be a Banach space. The weak topology and the norm topol-
ogy agree iff dimX < ∞.
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Proof. Suppose dimX < ∞. All norms on X are equivalent, so without loss
of generality, we can assume X = ℓn1 . If xα −→w 0, then xα converges to zero
coordinate-wise (because coordinates are linear functionals). In ℓn1 , coordinate
convergence implies norm convergence. On the other hand, if the two topologies
agree then every base neighbourhood must contain a base neighbourhood of the
other. Thus, BX , which is a zero neighbourhood for the norm topology must
contain Vε,t1,...,tn ⊃ {x ∈ X : fi(x) = 0 ∀i = 1, . . . , n} =

⋂n
i=1 ker f, which is a

subspace of dimension at most n. This means that⋂
ker fi = {0},

so dimX ≤ n.

Example 8. Take X = ℓ2. Take A = {
√
nen : n ∈ N}. Then A meets Vε,f1,...,fm

for any ε > 0, fi ∈ X∗, but no sequence of A weakly converges to zero.

This shows that A contains a net which weakly converges to zero, but no se-
quences, so A the weak topology is not first countable. We need nets. Sequences
are not enough.

Example 9. Let X, and Y be Banach spaces. L(X,Y ) is again a Banach space.
For a net (Tα), we say that Tα −→S T if Tαx −→∥ · ∥ Tx in Y . We say that
Tα −→W T if Tαx −→w Tx in Y . Then for a net (Tα) ∈ L(X,Y ∗), we say
that Tα −→W∗ T if Tαx −→w∗ Tx in Y ∗. These are the strong, weak, and
weak* operator topologies. All of these are linear topologies. What is a base of
neighbourhoods of each?

Proof of above for strong operator topology. Suppose that (Tα), (Sα) ⊂ L(X,Y )
are two nets which converge strongly. Then for all x ∈ X one has

∥Tαx− Tx∥ −→ 0,

and
∥Sαx− Sx∥ −→ 0.

Then

∥(Tα + Sα)x− (T + S)x∥ ≤ ∥Tαx− Tx∥+ ∥Sαx− Sx∥ −→ 0.

Then if λα −→ λ we have

∥λαxTα − λTx∥ = ∥λαTαx+ λαTx− λαTx− λTx∥ ≤ |λα| ∥Tαx− Tx∥+|λα − λ)| ∥Tx∥ −→ 0.

A base of neighbourhoods is given by

Vε,x1,...,xn
= {T ∈ L(X,Y ) : ∥Txi∥ < ε∀i}.

Now we return back to TVS.
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Lemma 6. Let U ∈ N0. Then U is absorbing.

Proof. Fix x ∈ X. Then limλ−→0 λx = 0. Thus, there is ε > 0 such that for all
λ with |λ| ≤ ε we have λx ∈ U . In particular if 0 ≤ µ ≤ ε, then µx ∈ U. Thus
U is absorbing.

Lemma 7. Let U ∈ N0. Then there exists V ∈ N0 such that V +V ⊂ U. (This
is essentially continuity of addition).

Proof. If U is in N0 then by continuity of addition there exists W1,W2 ∈ N0

such that W1 +W2 ⊂ U . Take V = W1 ∩W2.

Lemma 8. If A is balanced then so is A.

Proof. Let x ∈ A and λ ∈ F with |λ| ≤ 1. We want λx ∈ A. Since x ∈ A there
exists a net (xα) of elements in A with xα −→ x. Then since A is balanced,
λxα ∈ A and λxα −→ λx ∈ A.

Note that if A is balanced, then A◦ is not always balanced, but {0} ∪A◦ is
balanced.

Lemma 9. Let X be a TVS. Then N0 has a base of closed balanced sets.

Proof. It suffices to show that all closed balanced sets in N0 form a base of
neighbourhoods of N0. That is, every neighbourhood contains a closed balanced
neighbourhood. Since scalar multiplication is continuous, there exists ε > 0
and W ∈ N0 such that λx ∈ U when |λ| ≤ ε, and x ∈ W . Put V = {λx :
|λ| ≤ ε, x ∈ W}. Then V ⊃ εW ∈ N0. V is balanced by definition. Let
U ∈ N0, find W ∈ N0 such that W + W ⊂ U . Then find a balanced V s.t.
V ∈ N0 and V ⊂ W. Then V is closed and balanced. All is left to show is
that V ⊂ U. Let x ∈ V and find a net (xα) ⊂ V with xα −→ x ∈ V. Thus
xα − x −→ 0. Since V ∈ N0 there is a tail of xα with (xα)α≥α0

⊂ V. Then
x = x− xα + xα ∈ V +W ⊂ W +W ⊂ U.

Corollary 1. A TVS is Hausdorff iff
⋂

N0 = {0}.

Proof. Suppose that X is Hausdorff and that x ̸= 0 ∈ X. Then there exists
U ∈ Nx, V ∈ N0 such that U ∩ V = ∅, so x /∈ V , so x /∈

⋂
N0. In other words⋂

N0 = {0}.

Suppose now that
⋂
N0 = {0}. Let x ̸= y. Take z = x−y ̸= 0, so z /∈

⋂
N0 ⊂

V for all V ∈ N0. For all U ∈ N0 there is W ∈ N0 such that W+W ⊂ U . There
exists V ⊂ W such that V is balanced, V ⊂ W , so V + V ⊂ U. We claim that
(x+V )∩ (y+V ) = ∅. If not, then there is a ∈ X such that a = x+v1 = y+v2,
for v1, v2 ∈ V. so a − x, a − y ∈ V . Since V is balanced, x − a ∈ V. Then
z = x− a+ a− y ∈ V + V ⊂ U. A contradiction.
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Theorem 10. A topology on a vector space is linear iff for all x, y ∈ X, U ∈ Nx

and 0 ̸= λ ∈ F , one has

U + y ∈ Nx+y, λU ∈ Nλx.

∀U ∈ N0, U is absorbing

∀U ∈ N0,∃V ∈ N0, V ⊂ U and V is balanced.

∀U ∈ N0,∃V ∈ N0, V + V ⊂ U.

Proof. See Dhmitri’s notes.

Theorem 11. A TVS X is metrizable iff it is first countable and Hausdorff.

Proof. See Dhmitri’s notes.
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Theorem 12 (Hahn-Banach Theorem). Let E be a vector space over R. Let
ρ : E −→ [0,∞) be a function satisfying ρ(λx) = λρ(x) for λ ≥ 0 and ρ(x+y) ≤
ρ(x) + ρ(y). Let X be a vector subspace of E and f : X −→ R be a linear
functional such that for all x ∈ X : f(x) ≤ ρ(x). Then f extends to a linear
functional F : E −→ R such that for all x ∈ E one has f(x) ≤ ρ(x).

Proof. Math 516.

Note, if ρ is indeed a seminorm, that is ρ(λx) = λρ(x) for all λ ∈ R then

±F (x) = F (±x) ≤ ρ(±x) = ρ(x),

so |f(x)| ≤ ρ(x).

Theorem 13 (Hahn Banach for Locally Convex Topological Vector Spaces).
Let X be a LCTVS, Y ⊂ X a subspace. f ∈ Y ∗ a continuous linear functional.
Then f extends uniquely to a continuous linear functional F ∈ X∗.

Proof. Consider first k = R. Since f is continuous on Y , f(0) = 0, there exists a
neighbourhood V0 of zero in Y such that f(V0) ⊂ (−1, 1). Then V0 = V ∩Y for
some neighbourhood of zero V in X. WLOG, V is convex and balanced (convex
because X is locally convex). Then the Minkowski functional ρV is a seminorm
on X. Let y ∈ Y . Then For every s > PV (y) one has y/s ∈ V so y/s ∈ V0.
This means |f(y/s)| < 1 and so f(y) < s. Taking inf over s > pV (y) we obtain
f(y) ≤ pV (y). Then by Hahn-Banch we obtain a linear functional F ∈ X∗ such
that for all x ∈ X one has |F (x)| ≤ ρ(x). If xα −→ 0 then pV (xα) −→ 0, so
F (xα) −→ 0. For the case F = C, we reduce to the case F = R by considering
ℜf .

Definition 25. For a TVS X we write

X∗ = {f : X −→ F : F continuous and linear}

Corollary 2. Let X be a LCTVS and Y ⊂ X a closed subspace and a /∈ Y .
Then there is a continuous linear functional f ∈ X∗ such that f vanishes on Y
and f(a) = 1.

Proof. Same as 516. Take Z = span{Y, a} and define f : Z −→ F via f(y +
λa) = λ. This is well defined by liner algebra. f vanishes on Y , f(a) = 1, f is
continuous because ker f = Y is closed. By Hanh Banach for LCTVS, f extends
to ∈ X∗ so F still vanishes on Y and F (a) = f(a) = 1.

Corollary 3. Let X be a LCTVS, x ∈ X and x ̸= 0. Then there is f ∈ X∗

such that f(x) ̸= 0.

Proof. Apply the previous corollary for Y = {0}.

We remark that the kernel of f is generally not the same as the kernel of
F . The kernel of F could be much bigger. In particular, this means that X∗ is
non-trivial. That is, LCTVS have large duals.
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Example 10. Let X = L0[0, 1] with the topology of convergence in measure.
This is a linear topology. Yet, it is not locally convex (HW). Actually, there are
no proper convex sets in N0. It follows that X∗ = {0} because if 0 ̸= φ ∈ X∗

then the set {x : |φ(x)| < 1} is a convex neighbourhood of zero. This is the unit
ball of ρ where ρ(x) = |φ(x)| .

Example 11. X = Lp[0, 1], 0 < p < 1. Then X is a topological vector space
but X∗ = {0}, so X is not locally convex.

Example 12. X = L2[0, 1]⊕L1/2[0, 1] is not locally convex. X∗ = L2[0, 1]⊕{0},
so X∗ is not trivial.

Example 13. X = ℓp for 0 < p < 1. Then X∗ is non-trivial because every
coordinate functional is in X∗. Yet, X is not locally convex.

Proof. Suppose that X is locally convex. Then BX contains a convex V ∈
N0. {1/nBX : n ∈ N} is a base of the topology. Then there is n ∈ N such
that 1/nBX ⊂ V . It follows that (1/n)BX ⊂ V ⊂ BX . For every n ∈ N
we have that ek ∈ BX , so (1/n)ek ∈ (1/n)BX . Thus (1/b)ek ∈ V and thus
x = (1/n)

∑n
k=1(1/n)ek ∈ V and also lies in BX . But

∥∥(1/n2)
∑n

k=1 ek
∥∥ ≤ 1

and ∥
∑n

k=1 ek∥ ≤ n2. Then ∥(1, 1, 1, . . . 0, . . .)∥ = n1/p < n2.

Now we discuss some things about seperation of convex sets. Let X be a
TVS over R. Let A,B ⊂ X be two non-empty subsets of X and f : X −→ R a
linear functional (usually f ∈ X∗). f seperates A from B if supa∈A f ≤ infb∈B f .
That is, there is c ∈ R such that f|A ≤ c and f|B ≥ c. A and B need not have
empty intersection. Note that if f seperates A from B then −f seperates B
from A.

We remark that the seperation makes sense over any vector space. Not just
a TVS. In the case that supa∈A f < infb∈B f we say that f strictly seperates A
and B.

Theorem 14. Let X be a LCTVS. Let C be a convex non-empty subset of X
with non-empty interior such that 0 /∈ C◦. Then there is f ∈ X∗ such that
f |C≥ 0.

Proof. Take a ∈ C◦. Put K = a− C. Then a /∈ K, 0 ∈ K◦. Find a neighbour-
hood V ∈ N0, V ⊂ K. Without loss of generality V is balanced and convex.
Since V ⊂ K, ρK ≤ ρV . Since V is balanced, pV is a seminorm and K is convex
and absorbing so ρK is always finite. One has ρK(λx) = λρK(x) when λ ≥ 0.
Since K is convex, ρK(x+y) ≤ ρK(x)+ρK(y). Since a /∈ K one has ρK(a) ≥ 1.
Let Y = span{a}. Define f : Y −→ R such that f(λa) = λρK(a) for λ ∈ R.
Then f is a linear functional on Y with the property that f(λa) ≤ ρK(λa).
Then by Hahn Banach f extends to F ∈ X∗ such that for all x ∈ X one
has F (x) ≤ ρK(x) ≤ ρV (x). Then one verifies that |F (x)| ≤ ρV (x), so F is
continuous. If xα −→ 0 then ρV (xα) −→ 0 which means F (xα) −→ 0.

For every x ∈ C we have a − x ∈ K so a ≥ ρK(a − x) ≥ F (a − x) =
F (a)− F (x) = f(a)− F (x) = ρK(a)− F (x) ≥ 1− F (x).
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We remark that if X a TVS then possibly the above theorem works, we need
V not be convex. Check this.

Corollary 4. Let A and B be two disjoint non-empty convex sets in a locally
convex topological vector space X (possibly not locally convex). Suppose that∫
A ̸= ∅. Then there is a linear functional f : X −→ R seperating A from B.

Proof. Take C = A − B. Since A and B are convex, so is C. Since
∫
A ̸= ∅

then
∫
C ̸= ∅. Since A ∩ B = ∅ we have 0 /∈ C. Then by the theorem there is

f ∈ X∗ such that f |C≥ 0 and thus for all a ∈ A and b ∈ B we have f(a−b) ≥ 0,
so f(a) ≥ f(b). This proves the seperation.

Suppose that A and B are loesd and bounded, non-empty and disjoint. Can
we strictly seperate? NO. The counter example is as follows. Let X = c0
indexed by N. Take A = conv{en} and B = conv ((1/n)e0 + en). Then A and
B are closed and bounded and convex. Both are closed and convex. Both are
bounded. A ⊂ BX and B ⊂ 2BX . A and B can not be strictly seperated
because ((1/n)e0 + en)− en = (1/n)e0 −→ 0. Also A ∩B ̸= ∅.

Theorem 15. Let X be a LCTVS, A,B ⊂ X being non-empty, disjoint, convex,
where A is closed and B is compact. Then there is f ∈ X∗ which strictly
seperates A from B.

Proof. Let C = A− B. As before, C is convex, closed, and 0 /∈ C. Then there
is V ∈ N0 such that V ∩ C = ∅. Without loss of generality, V is convex and
balanced. Then from the corollary we can find f ∈ X∗ such that f seperates V
and C. Then λ = supV f ≤ infV f . Since 0 ∈ V we see that λ ≥ f(0) = 0, so
λ ≥ 0. I claim that λ > 0. If λ = 0 then for all x ∈ V we have ±x ∈ V For all
a ∈ A and b ∈ B we have a−b ∈ C so f(a−b) and thus ±f(x) = f(±x) ≤ λ = 0,
so f vanishes on V and since V is absorbing f vanishes everywhere, so f is zero,
which is a contradiction. Since λ > 0 we have for all a ∈ A, b ∈ B we have
a− b ∈ C so f(a− b) ≥ 0 and thus infa∈A f ≥ supb∈B f + λ but since λ > 0 we
get infa∈A f > supb∈B f.

Recall from last time, that if X is a TVS, A and B are disjoint non-empty
convex sets, A◦ ̸= ∅. Then A and B can be seperated by some f ∈ X∗. If X is
a locally convex topological vector space where A and B are disjoint, non-empty
sets, where A is closed and B is compact then A and B can be strictly seperated
by some f ∈ X∗. Let f ∈ X∗. Then the set {f = c} = {x ∈ X : f(x) = c} is
called a hyperplane where c ∈ F (or R when we do seperation theorems). The
set {f ≤ c} is called a (closed) halfspace. These are closed convex sets. For a set
A, by convA we denote the least (intersection of all) convex set which contains
A, or the set of all convex combinations of elements of A. Then we write convA
to be the closed convex hull of A.

Lemma 16. Let X be a LCTVS, and A ⊂ X. Then convA is the intersection
of all closed half spaces containing A.
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Proof. One has convA ⊂ C trivially. Suppose x ∈ C but x /∈ convA. Then
since {x} is compact and convA is closed, both are convex, we can strictly
seperate them. There is f ∈ X∗ and c ∈ R such that convA ⊂ {f ≤ c}, but
x /∈ {f ≤ c}.

Corollary 5. Every closed convex set is the intersection of all closed convex
half-spaces containing it.

This means that the closed convex sets in X are determined precisely by the
continuous functionals on it. So, if X is a vector and τ1 and τ2 are two locally
convex topologies on X such that (X, τ1)

∗ = (X, τ2)
∗, then τ1 and τ2 have the

same closed convex sets. In particular, they have the same closed subspaces.
As an application, if X is a Banach space. By the homework, a linear

functional f : X −→ R is norm continuous iff it is weakly continuous. Thus
X∗ = (X, ∥·∥)∗ = (X,w)∗. This means a convex set is norm closed iff it is weakly
closed.

We now move onto the next big topic, but first we discuss some motivation.
In a vector space we have the concept of a Hamel basis B, and the idea is that
is is a “small” set, but we can recover the whole space as the span of this set B.
In a Banach space, we have the concept of a Schauder basis S. That is, a rela-
tively “small” (countable) set such that its closed span of S is the whole space.
Now, given a convex set C in a vector space or a Banach space, we would like
to find a “small” subset A of C so that C = convA or in the case of a Banach
space C = conv(A). For a polytope in Rn we can take A to be the boundary of
P or just the vertices V , and then write A = conv∂A or A = convV . We wish
to determine these points, and so we naturally come into the discussion of an
extreme point.

Definition 26. If X is a vector space and C is a convex set then we say that
x ∈ C is an extreme point if a, b ∈ C and λ ∈ (0, 1) with λa+(1−λ)b = x then
a = b = x.

We denote ext(C) to be the set of all extreme points of C. If X is a TVS
then ext(C) ⊂ ∂C. A subset E of C is an extremal subset of C if provided that
x, y ∈ C and λ ∈ (0, 1) such that λx+ (1− λ)y ∈ E then x, y ∈ E. An example
is a face of a polytope which satisfies this condition.

Theorem 17 (Krein-Millman Theorem). Let C be a convex compact set in a
LCTVS, then C = convext(C).

Proof. We first prove that ext(C) ̸= ∅. We will use Zorn’s Lemma. Let A
be the collection of all closed convex extremal subsets of C. This collection
is non-empty, because C is in this collection. Consider a decreasing chain
E1 ⊃ E2 ⊃ E3 ⊃ . . . Every element is compact being a closed subset of C.
Thus we have the finite intersection property. Thus by compactness the entire
chain has a non-empty intersection. This intersection is again in A (skipped
just verify intersection of extreme sets is extreme). Thus by Zorn’s Lemma A
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has a minimal element, say M . M is an extreme set, we will show that M
is a singleton. Suppose not. Then we can find a ̸= b ∈ M . Then we can
find f ∈ X∗ such that f(a) < f(b), so f is not constant on M . Since M is
a closed subset of a compact set C, M is compact. So f attains a minimum
on M . Let m = minM f . Let M0 = M ∩ {f = m}. Since f is not constant
we have M0 is properly contained in M . We will show that M0 is an extremal
subset of C leading to a contradiction of minimality. Let x, y ∈ C, λ ∈ (0, 1)
and consider λx + (1 − λ)y ∈ M0. Then λx + (1 − λ)y ∈ M . Since M is
an extreme set, x, y ∈ M. Since λx + (1 − λ)y ∈ M0 ⊂ {f = m}, we have
m = f(λx + (1 − λ)y) = λf(x) + (1 − λ)f(y) ≥ λm + (1 − λ)m = m. So
f(x) = m and f(y) = m and thus x, y ∈ M0. The contradicts the minimality of
M .

Now we prove the second part by contradiction. Suppose there exists a ∈ C
such that a /∈ convexTC. Since {a} is convex and compact, and convext(C) is a
closed subset of C, convex and compact, we can strictly seperate them. There is
g ∈ X∗ such that g(a) ≤ c < d ≤ g |convext(C). Let s = minC g. L = C∩{g = s}.
Then gL ≤ g(a) ≤ c < d ≤ g |convext(C) . L is a convex closed subset of C, hence
compact. By part 1, L has extreme points, say b ∈ ext(L). The claim is that
b ∈ ext(C) (this will be a contradiction). Take x, y ∈ C, λ ∈ (0, 1), such that
λx+(1−λ)y = b. Since b ∈ L, s = g(b) = g(λx+(1−λ)y) = λg(x)+(1−λ)g(y) ≥
λs + (1 − λ)s = s, so g(x) = g(y) = s, so x, y ∈ L. Since b ∈ ext(L) we have
x = y = b.

Example 14. Let X = C[0, 1] over R. Denote C = {f ∈ X : −1 ≤ f ≤ 1} =
BX = [−1, 1]. C is convex. What is ext(C)? Then ±1 ∈ ext(C). There are not
other extreme points. One verifies that C is not compact with respect to any
Hausdorff locally convex topology.

Now we discuss dual pairs. Let X be a normed space. X∗ the dual space.
For f ∈ X∗ f acts on X by x −→ f(x). Similarly x ∈ X acts on X∗ by
f −→ f(x).

Definition 27. A dual pair is a pair fo vector spaces X and Y equipped with
a bilinear map ⟨·, ·⟩ : X × Y −→ F that seperates points of X and Y : For all
x ̸= 0 ∈ X there is y ∈ Y such that ⟨x, y⟩ ≠ 0. Similarly for all y ̸= 0 ∈ Y there
is x ∈ X such that ⟨x, y⟩ ≠ 0.We write ⟨X,Y ⟩. This definition is symmetric
under the map (y, x) −→ ⟨x, y⟩.

Example 15. Let X be a normed spae. Then X and X∗ are dual pairs. One
has ⟨x, f⟩ = ⟨f, x⟩ = f(x).

Example 16. Similarly, X∗ and X∗∗ are dual pairs via ⟨f, ξ⟩ = ξ(f).

Example 17. Lp(µ) and Lq(µ) are dual pairs under ⟨f, g⟩ =
∫
fg dµ, where

1/p+ 1/q = 1

Let ⟨X,Y ⟩, be a dual pair. Each y ∈ Y defines a linear functional on X
via x −→ ⟨x, y⟩. Similarly, every x ∈ X gives rise to a linear functional on
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Y . Let σ(X,Y ) be the weakest topology on X which makes all the functionals
of the form ⟨·, y⟩ for y ∈ Y continuous. In terms of convergence this means
that xα −→ x iff ⟨xα − x, y⟩ −→ 0. This is point-wise convergence. We treat
elements of X as functions on Y . In the language of semi-norms, xα −→ x iff
⟨xα − x, y⟩ −→ 0 for all y ∈ Y iff py(xα − x) −→ 0 for all y ∈ Y, where py is the
semi norm on X given by py(x) = |⟨x, y⟩|. Thus σ(X,Y ) is given by a family of
semi-norms so locally convex.

Since σ(X,Y ) is the topology of point-wise convergence, we can identify a
base for N0, being

Vε,y1,...,yn = {x ∈ X : |⟨x, y⟩| < ε∀i = 1, . . . , n}.

Exercise 6. Conditions in the definition of dual pairs require means that the
two induced topologies on X and Y are Hausdorff.

Example 18. Let X be a normed space. Consider the dual pair ⟨X,X∗⟩. Then
σ(X,X∗) is the weak topology on X. This is the weak* topology on X∗. Then
σ(X∗, X∗∗) is also the weak* topology on X∗.

Recall, the Alaoglu-Bourbaki Theorem for Banach spaces. Let X be a Ba-
nach space. Then BX∗ is w∗-compact. We deduced from the Krein-Milman
Theorem that Y = C[0, 1] over R then BY is not compact in any locally convex
topology (not enough extreme points). Therefore Y = C[0, 1] is not equal to
X∗ for aany Banach space X, as otherwise BY = BX∗ would be w∗-compact.
Thus C[0, 1] is not a dual space. If X is reflexive then (X∗, w∗) = (X∗, w) so
that BX∗ is weakly compact. We will later show that this is an iff.

Definition 28. Given a dual pair ⟨X,Y ⟩ and a subset A of X we defined the
polar of A as a subset Y then

A◦ = {y ∈ Y : ∀x ∈ A : |⟨x, y⟩| ≤ 1}.

Example 19. If X is a Banach space and Y = X∗ and A = BX then B◦
X =

{f ∈ X∗ : ∀x ∈ BX : |f(x)| ≤ 1} = BX∗ .

Some properties, (λA)◦ = 1
λA

◦ for λ > 0. If A ⊂ B then B◦ ⊂ A◦.
(A∪B)◦ = A◦∩B◦. Note that (A∩B)◦ ̸= A◦∪B◦ always. A◦ is absorbing and
convex and σ(X,Y )−closed. Further A ⊂ A◦◦ (which is easy), but A ̸= A◦◦ in
general (just take any non-convex A).

Theorem 18. Let ⟨X,Y ⟩ be a dual pair, A ⊂ X, be non-empty. Then A◦◦ =
aconvσ(X,Y )A.

As a corollary we have the A = A◦◦ iff A is absolutely convex and σ(X,
Y)-closed.

Proof. Let C = aconvσ(X,Y )A. Since A ⊂ A◦◦ one has A◦◦ is absolutely convex
so aconvA ⊂ A◦◦. A◦◦ is σ(X,Y ) closed so C ⊂ A◦◦.

We are left to prove that A◦◦ ⊂ C. Suppose not. Take a ∈ A◦◦ \ C. C
is convex and σ(X,Y ) closed, {0} is compact, so by seperation theorem there
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is f ∈ (X,σ(X,Y ))∗ = Y such that supC f < f(a). Scaling f we may assume
that supC f ≤ 1 < f(a). Thus for all x ∈ C we have f(x) ≤ 1, but now C is
balanced, so ±x ∈ C so f(±x) = ±f(x) ≤ 1. In particular, for all x ∈ A we
have f(x) ≤ 1 (since A ⊂ C). But this means that f ∈ A◦ and since a ∈ A◦◦

and so |f(a)| ≤ 1 because f(a) > 1.

Corollary 6. If A and B are non-empty and absolutely convex and σ(X,Y )
closed then (A ∩B)◦ = aconvσ(X,Y )(A◦ ∪B◦).

Proof. Bipolar Theorem.

Theorem 19 (Aloglu-Bourbaki Theorem For Polar). Let X be a LCTVS (Haus-
dorff) and V ∈ N0. Then V ◦ with respect to the dual pair ⟨X,X∗⟩ is σ(X,X∗)
compact.

Corollary 7. The Theorem for Banach spaces is a special case. We just take
V = BX and thus V ◦ = BX∗ . σ(X,X∗) is the weak* topology on X∗.

Proof. V ◦ ⊂ X∗ ⊂ FX . For (F = R). The σ(X∗, X) topology on X∗ is just
the extension of the product topology on RX . (That is, the topology of point-
wise convergence to X∗). Call this topology τ . It suffices to prove that V ◦ is
τ -compact. We will show that it is a τ -closed subset of a τ -compact set.

Claim 1 is that V ◦ is τ -closed in RX . Let (fα) be a net in V ◦ such that
fα −→τ f for some f ∈ RX . Then fα converges to f point-wise and thus f is
linear. For each x ∈ V , |fα(x)| ≤ 1 for all α because fα ∈ V ◦. Passing to the
limit in α we get |f(x)| ≤ 1. So f ∈ V ◦, so V ◦ is closed. We claim now that
V ◦ is point-wise bounded. Indeed fix x ∈ X and since V is absorbing we can
find λx > 0 such that x/λx ∈ V. For every f ∈ V ◦ we have |f(x/λx)| ≤ 1, so
|f(x)| ≤ λx. This means that f is bounded. But now we view RX =

∏
x R and

so V ◦ ⊂
∏

x[−λx, λx]. The right hand side is τ−compact by Tychonoff theorem
and so we conclude our result.

If A is closed, then convA need not be closed. Take for example the bell
curve in the plane and consider the convex hull. In a LCTVS, if A is bounded
then aconvA is bounded. Indeed, take any U ∈ N0, then find absolutely convex
V ⊂ U , such that V ∈ N0. Since A is bounded, we can find λ > 0 such that
A ⊂ λV ⊂ λU .

Lemma 20. Let X be a TVS. Let A1, . . . , An be aconvex compact subsets of
X. Then aconv(A1 ∪ . . . An) is compact.

Proof. TakeB = aconv(A1∪. . . , An) = {
∑n

i=1 λixi : xi ∈ Ai, λi ∈ F,
∑n

i=1 |λi| =
1}. Let K = Bℓn1

× A1 × . . . × An. By Tikhomov’s Theorem, K is compact.
B = f(K) where f : K −→ X where f(λ, x1, . . . , xn) =

∑n
i=1 λixi. f is contin-

uous, so f(K) is compact.

Corollary 8. If F is finite, then aconvF is compact. (In a TVS).
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Theorem 21 (Mazur). Let X be a LCTVS (Hausdorff), and A ⊂ X. If A is
totally bounded then aconvA is totally bounded.

Proof. Let V ∈ N0, be absolutely convex. Since A is totally bounded, we can
find a finite set F such that A ⊂ F +V . Let x ∈ aconvA. Then x =

∑n
i=1 λi]xi

where xi ∈ A and
∑n

i=1 |λi| = 1. Then xi ∈ F + V so xi = fi + vi for some
fi ∈ F and vi ∈ V. Then x =

∑n
i=1 λi(fi + vi) =

∑n
i=1 λifi +

∑n
i=1 λivi ∈

aconvF + V = aconvF + V . Then aconvA ⊂ aconvF + V so taking closures we
see the result.

Now we move onto Mackey-Arens Theory. We move onto some definitions.
Let X be a TVS and f : X −→ F be a linear functional. f is continuous means
for all ε > 0 there is V ∈ N0 such that for all x ∈ V , |f(x)| < ε.

Let A be a set of linear functionals osn X. We say that A is equicontinuous
if for all ε > 0 there is V ∈ N0 such that for all x ∈ V and for all f ∈ A one has
|f(x)| < ε. This implies A ⊂ X∗. This is a uniform continuity for functions.

Lemma 22. Let A ⊂ X∗. Then A is equicontinuous if and only if A ⊂ W ◦ for
some W ∈ N0.

Proof. Take ε = 1. Then there is V ∈ N0 such that for all f ∈ A and all x ∈ V
we have |f(x)| ≤ 1, so A ⊂ V ◦. On the contrary, if ε > 0 then take V = εW .
Then for all f ∈ A, f(V ) = εf(W ) ⊂ ε[−1, 1] = [−ε, ε].

Recall in a LCTVS, polars are σ(X∗, X)−compact by Alaoglu-Bourbaki so
every equicontinuous set is relatively σ(X∗, X)−compact.

Definition 29. Let ⟨X,Y ⟩ be a dual pair. Think of elements of Y as functions
from X to F . Let A ⊂ X. We say that a net (yα) ⊂ Y converges to y ∈ Y
uniformly on A if for all ε > 0 there is α0 such that for all α ≥ α0 and for all
x ∈ A we have |yα(x)− y(x)| < ε.

Again by shifting it suffices to consider convergence to zero because yα −→ y
iff yα − y −→ 0. This means yα −→ 0 uniformly on A iff supx∈A |yα(x)| −→ 0
as α −→ ∞. But ρA(y) = supx∈A |yα(x)| is almost a seminorm. From now on
we will assume that A is σ(X,Y )-bounded. This guarentees that ρA(y) is finite
for all y ∈ Y , and thus ρA(y) is finite for all y ∈ Y . Then ρA is a semi-norm,
so uniform convergence on A is a seminorm convergence, so it corresponds to a
locally convex topology (generally, not Hausdorff, i.e. the seminorms kernel is
not trivial). Let B be the unit ball of ρA. One has B ⊂ Y . Then for all y ∈ B
one has ρA(y) ≤ 1 iff supx∈A |y(x)| ≤ 1 iff ∀x ∈ A one has |y(x)| ≤ 1 iff y ∈ A◦.

Recall, let ⟨X,Y ⟩ be a dual pair. Let A ⊂ X. On Y consider uniform
convergence on A. We say that yα −→ 0 uniformly in A if for all ε > 0 there
is a0 such that for all a ≥ a0 and all x ∈ A we have |⟨x, yα⟩| < ε. Similarly
for a set B ⊂ Y we can consider uniform convergence in B as a topology on
X. This convergence is given by a semi-norm ρA(y) = supx∈A⟨x, y⟩. The unit
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ball of ρA is A◦. Multiply A◦ form a base of the the topology (this is generally
not Hausdorff). Now let S be any family of σ(X,Y )-bounded subsets of X.
Consider on Y the topology given by uniform convergence on all members of
this family. This is called the S-topology). This topology is given by the family
of seminorms {ρA : A ∈ S}. For a base of neighbourhoods one can take the
polars of the sets in S, their scalar multiples and finite intersections.

Example 20. Let S be the set of all singletons in X. Then S convergence is
point-wise convergence. σ(X,Y ) convergence.

Example 21. Let X be a Banach space. Take S = {BX}. Then ⟨X,X∗⟩ S
convergence is norm convergence with respect to ∥ · ∥X∗ .

We have that S topologies are locally convex, but more is true: Every locally
convex topology is an S topology.

Theorem 23. Let (X, τ) be a LCTVS. Then τ is the S topology for (X,X∗)
where X∗ = (X, τ)∗ and S = {V ◦ : V ∈ Nτ

0 }. That is, xα −→ 0 in τ iff
xα −→ 0 uniformly on V ◦ for each V ∈ Nτ

0 .

Proof. Suppose xα −→ 0 in τ . Fix V ∈ Nτ
0 . Take ε > 0 and then we have

εV ∈ Nτ
0 so εV contains a tail of (xα). There is α0 such that for all α ≥ α0 we

have xα ∈ εV so xα/ε ∈ V , for each v ∈ V ◦ we have |y(xα/ε)| ≤ 1 so |y(xα)| ≤ ε.

Now suppose that xα −→S 0. Want to show that xα −→τ 0. Take V ∈ Nτ
0 .

It suffices to show that xα has a tail in V . WLOG V is absolutely convex and
τ closed since every LCTVS has a absolutely convex closed base of neighbour-
hoods. We have V ◦ ∈ S so (xα) converges to zero uniformly in V ◦. Take ε = 1.
Then there is α0 such that for all α ≥ α0 we have for all y ∈ V ◦, |⟨x, y⟩| ≤ 1.
Then xα ∈ V ◦◦ = V by polar theorem because V is absolutely convex and
τ -closed, so weakly closed because σ(X,X∗) and τ have the same dual X∗ so
the same convex closed sets.

Recall a subset A of X∗ is τ -equicontinuous iff A ⊂ V ◦ for some V ∈ Nτ
0 .

Corollary 9. Let (X, τ) be a LCTVS. Then τ is the S topology of ⟨X,X∗⟩
where S is the set of all equicontinuous subsets of X∗.

Thus every locally convex topology is an S topology. The new idea is to
relate properties of τ with properties of S. The idea is to realate properties of
τ with properties of S. Recall, given a dual pair ⟨X,Y ⟩ and a locally convex
topology τ on X we say that τ is compatible with ⟨X,Y ⟩ if (X, τ)∗ = Y . We
already know that σ(X,Y ) is countable. Know that all compatible topologies
have the same closed sets.

Theorem 24 (Mackey Arens). Let ⟨X,Y ⟩ be a dual pair and τ a locally convex
Hasudorff topology on X. τ is compatible with ⟨X,Y ⟩ iff τ is the S topology for
some S consisting of absolutely convex σ(Y,X)-compact sets. Also

⋃
S = Y .
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Proof. Suppose that τ is compatible, (X, τ)∗ = Y . By the previous theorem, τ
is the S topology where S is the set of all polars S = {V ◦ : V ∈ Nτ

0 }, where each
polar is absolutely convex and by Banach-Alaoglu, V ◦ is σ(X∗, X)-compact. To
show that

⋃
S = Y take y ∈ Y = X∗ y is a τ−continuous functional on X, so

there is V ∈ N0 such that y(V ) ⊂ [−1, 1]. But thus y ∈ V ◦, so y ∈
⋃

S because
V ◦ ∈ S. The reverse proof we will skip.

Theorem 25 (Mackey). All compatible topologies have the same bounded sets.

Let ⟨X,Y ⟩ be a dual pair. We know that σ(X,Y ) is the weakest compatible
topology on X. Let S be the set of all absolutelt convex σ(Y,X) compact
subsets of Y . Then the corresponding S topology on X is the strongest topology
compatible topology on X. Denoted by τ(X,Y ), the Mackey topology. A
topology τ on X is compatible iff σ(X,Y ) ≤ τ ≤ τ(X,Y ). This is NOT the
strong topology β(X,Y ).

Recall that the canonical inclusion ι : X −→ X∗∗ is a homeomorphism
(X,w) −→ι (X

∗∗, w∗). Then we have Goldstein’s Theorem: If X is a normed
space then ι(BX) is w∗-dense in BX∗∗, so ι(X) is w∗-dense in X∗∗.

Corollary 10. X is reflexive iff BX is w−compact.

Proof. For the forward, this means ι is onto so BX∗∗ = ι(BX). Then (BX , w) ∼=
(BX∗∗ , w∗), which is compact by Banach Alogolu Theorem.

For the reverse, if (BX , w) is compact, then ι(BX) is w∗-compact so w∗-
closed. By Goldstein’s Theorem, it is also w∗-dense in BX∗∗ , so this means that
ι(BX) = BX∗∗ . Then ι(X) = X∗∗ by scaling, so ι is onto, so X is reflexive.

Note that if one has a topological space which is metrizable, then it must
be first countable, so there is a countable base of neighbourhoods at each point.
If (X,w) is the weak topology, we have a base of zero neighbourhoods of the
form Vε,f1,...,fn = {x ∈ X : |fi| < ε∀i = 1, . . . , n}. WLOG we can take ε = 1
and scale the fi accordingly. Thus, we will use the notation VF = V1,f1,...,fn to
simplify notation. Similalry, for (X∗, w∗) we have base neighbourhoods VA =
V1,x1,...,xn

. Today we ask the question, if (X,w) or (X∗, w∗) are metrizable?
The answer is NOOO!

Lemma 26. TFAE: dimX < ∞, (X,w) is metrizable, (X,w∗) is metrizable.

Proof. We prove only 1 ⇐⇒ 2, 3 is easy. If dimX < ∞ then all linear topolo-
gies are the same, so since X is normable, every linear topology is metrizable.
On the other hand, if we go by contradiction and suppose that (X,w) is metriz-
able but dimX = ∞ then (X,w) is first countable, so there exists a sequence
(Fn) of finite subsets of X∗ such that VFn ’s form a base of zero for (X,w). Put
F =

⋃
n Fn, a countable set in X∗. Let Y = spanF . We claim that Y = X∗.

Clearly Y ⊂ X∗. If not, there is g ∈ X∗ \ Y , g ̸= 0. Then V1,g is in Nw
0 . Then

VFn
⊂ Vε,g for some n. If x ∈

⋂
f∈Fn

ker g then λx ∈
⋂

f∈Fn
ker f for every λ ∈

F , so λx ∈ VFn
, so λx ∈ V1,g, so |g(λx)| ≤ 1, since λ is arbitary, then g(x) = 0, so
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x ∈ ker g. Thus
⋂

f∈Fn
ker f ⊂ ker g, but then this means g ∈ spanFn, so g ∈ Y .

This proves the claim, so X∗ = Y = span
⋃∞

n=1 Fn =
⋃∞

n=1 spanFn. Thus X∗

can be written as a countable union of finite dimensional subspaces which are
closed and nowhere dense, which contradicts Baire-Category theorem.

Now we talk about the balls

Lemma 27. X is seperable iff (BX∗ , w∗) is metrizable.

Proof. If X is seperable, then we can find a sequence {xn} ⊂ X which is dense
in X. For a net fα and f in BX∗ , by definition this means fα −→w∗ f iff for
all x ∈ X one has fα(x) −→α f(x) iff for all n fα(xn) −→α f(xns). The reason
why this works is because we have a bounded net of functions. But this holds
iff ρxn

(fα − f) −→ 0 where ρxn
(f) = |f(xn)|, this means that the w∗-topology

is given by sequence of semi-norms, where we define

d(f, g) =
∑ ρn(f − g)

1 + ρn(f − g)
2−n,

a metric on BX∗ corresponding to w∗.

For the other direction, suppose that (BX∗ , w∗) is metrizable, so it is first
countable, so there is a countable base at zero. We can find a sequence {An}
of finite subsets of X such that (VAn

∩ BX∗) form a base of neighbourhoods
for (BX∗ , w∗). But now, let A =

⋃∞
n=1 An, countable. It suffices to show that

X = spanA. Suppose not, then span is a proper closed subspace, so there is
f ∈ X∗, f ̸= 0, f vanishes on span(A). Hence f vanishes on each An, so
f ∈ VAn

, so f ∈
⋂∞

n=1 VAn
= {0}, so f = 0, a contradiction.

Corollary 11. If X is seperable then the restriction of w∗ to every bounded
subset of X∗ is metrizable.

Now we give the dual version.

Lemma 28. X∗ is seperable iff (BX , w) is metrizable.

Proof. Suppose that X∗ is seperable, then (BX∗∗,w∗) is metrizable, let d0 be a
metric. Then (BX , w) −→ (BX∗∗,w∗) is a homeomorphic embedding. For x, y ∈
BX we define d(x, y) = d0(ι(x), ι(y)). d(xn, x) −→ 0 iff d0(ι(xn), ι(x)) −→ 0 iff
ι(xn) −→w∗ ι(x) iff xn −→w x.

On the other hand, suppose that (BX , w) is metrizable, so first countable.
Find a sequence (Fn) of finite subsets of X

∗ such that the sequence (VFn
∩BX)

is a base of zero for (BX , w). Put F =
⋃∞

n=1 Fn. Suffices to prove that X∗ =
spanF . Suppose not, then there is g ∈ X∗ \ spanF , g ̸= 0. WLOG ∥g∥ = 1.
Now by Hahn Banach theorem we can find ξ ∈ X∗∗ such that ξ vanishes on
spanF , ξ(g) ̸= 0, ∥ξ∥ = 1, so ξ ∈ BX∗∗ . By Goldstein’s theorem, we can find a
net xα ⊂ BX such that ι(xα) −→w∗ ξ. Thus for ε > 0 we know Vε,g ∩ BX is a
neighbourhood of 0 (BX , w). This must contain a base neighbourhood VFn

∩BX
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for some n, so VFn ∩BX ⊂ Vε,g∩BX . For each f ∈ Fn it follows from x̂α −→w ξ
that f(xα) −→ ξ(f) = 0. This implies f(xα) −→ 0 for each f ∈ Fn. Then there
is α0 such that for all α ≥ α0 and all f ∈ Fn one has |f(xα)| < ε, because Fn is
finite. This means xα ∈ VF . So xα ∈ Vε,g, but this means |g(xα)| < ε. Hence,
g(xα) −→ 0. But x̂α −→w∗ ξ so g(xα) = x̂α(g) −→ ξ(g) ̸= 0.

Theorem 29 (Eberlein-Smulyan’s Theorem). Weak compactness is sequential.

In general, weak topology is not 1st countable, hence not sequential, so we
need to use nets. A set A is a Hausdorff space is said to be relatively compact
if clA is compact, or equivalently, if A is contained in a compact set, or equiva-
lently every net in A has an accumulation point, or equivalently every net has
a convergent subset whose limit is not necessarily in A. (In particular, every
sequence in A has a convergent subnet). In the first countable case, it suffices
to show that every sequence has a convergent subsequence. Recall that if X is
a seperable Banach space and C ⊂ X is w−compact then the weak topology in
C is metrizable, hence first countable.

Observe that every weakly compact set is bounded. Weakly compact implies
weakly bounded which is the same as norm bounded in a Banach space. This
immediately means also that relatively weakly compact sets are bounded by the
same type of argument. If X is reflexive then relatively weakly compact sets
are exactly the bounded sets. The forward we already know, and the other way
is because the BX is weakly compact.

If A is bounded thne A ⊂ λBX for some λ > 0 λBX is weakly compact, so
A is relatively weakly compact.

Lemma 30. Let A ⊂ X where X is a Banach space. Then A is relatively
weakly compact iff A is bounded and (ι(A))w

∗ ⊂ ι(X).

From here on out we drop the notation ι(x), and just write x. In the above

notation we simply mean that A
w∗

⊂ X.

Proof. =⇒ . Suppose A is relatively weakly compact. This means that A
w

is weakly compact in X, so in particular bounded. Let ξ ∈ A
w∗

(in X∗∗).
Then we can find a net (xα) in A such that (xα) −→w∗ ξ in X∗∗. Since A is
relatively weakly compact then (xα) has a weakly convergent subnet, we have
(xα) −→w x ∈ X. This means that xα −→w∗ x ∈ X ⊂ X∗∗. This means

ξ ∈ X. ⇐= . Suppose that A
w∗

⊂ X in X∗∗ and A is bounded. Without
loss of generality, A ⊂ BX , so A ⊂ BX∗∗ in X∗∗. But BX∗∗ is w∗-compact
by Alogolu-Bourbaki, so A is relatively-w∗ compact, i.e. clAw∗

is w∗-compact,
hence this clA is weakly compact as a subset of X, so A is relatively weakly
compact.

Theorem 31 (Restatement of Eberlein Smulyan.). Let A ⊂ X where X is a
Banach space. The following are equivalent: A is relatively weakly compact.
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Every sequence in A has a w−convergent subsequence. Every countable subset
of A has a weak accumulation point.

Proof of Eberlein-Smulyan. =⇒ Suppose A is relatively weakly compact. Let
(an) in A, and put C = A

w
. Then C is weakly compact. Put Y = [an] so Y

is seperable. Being a closed subspace, Y is weakly closed, so C ∩ Y is weakly
closed subset of C, hence weakly compact in X and therefore in Y . Since Y is
seperable, (C ∩ Y,w) is metrizable, so first countable, and (an) ⊂ C ∩ Y , so we
can find a convergent subsequence.

2 =⇒ 3 is trivial.

3 =⇒ 1. Suppose A satisfies 3. We claim that A is bounded. For each
f ∈ X∗, f(A) satisfies 3 in F . Every countable subset of f(A) has an accumu-
lation point. Hence, f(A) is relatively compact in F , so bounded. This means
that A iw weakly bounded since this is true for all f ∈ X∗. But then by uni-
form boundedness principle, norm bounded. By the Lemma above, it suffices

to prove that A
w∗

⊂ X in X∗∗. Let ξ ∈ A
w∗

, we will construct a sequence (an)
in A. By 3, (an) has an accumulation point a ∈ X. We will show that ξ = a
(or rather ξ = â), so ξ ∈ X. We will inductively construct three sequences, one
sequence (an) ∈ A, (fn) ⊂ SX∗ , a sequence (kn) in N which is strictly increas-
ing such that, for all ζ ∈ span{ξ, a1, . . . , an}, then there exists i ≤ kn+1 so that
⟨ζ, fi⟩ ≥ (1/2) ∥ζ∥. That is, f1, . . . , fkn , fkn+1 almost norm the subspace. The
next property is that |⟨ξ − an, fi⟩| < 1/n for all i = 1, . . . , kn. That is an ≈ ξ
when witnessed by f1, . . . , fkn

.

Lets start by considering n = 1. Take f1 ∈ SX∗ . Put k1 = 1. Since ξ ∈ A
w∗

,
every w∗ neighbourhood of ξ meets A, so ξ + V1,f1 meets A. Take any a ∈ (ξ +
V1,f1)∩A. Then a1 ∈ A and |⟨a1 − ξ, f1⟩| < 1, so we get 2. Suppose now we con-
structed a1, . . . , an, and k1, . . . , kn and f1, . . . , fn. Put M = span{ξ, a1, . . . , an}
in X∗∗. Then SM is compact, so we can find ζkn+1, . . . ζkn+1

such that for all
ζ ∈ SM one has ∥ζ − ζi∥ ≤ 1/4. For each i = kn+1 . . . , kn+1, find fi ∈ SX∗ such
that ⟨fi, ζi⟩ > 3/4. For each ζ ∈ SM find i = kn+1, . . . kn+1 with ∥ζ − ζi∥ < 1/4.
This means ⟨f1, ζ⟩ = ⟨f1, ζ − ξi + ξi⟩ = ⟨fi, ζ − ξ1⟩ + ⟨fi, ξi, >⟩ 1/2. Now we

want to satisfy |⟨ξ − an, fi⟩| < 1/n for all i = 1, . . . , kn. Since ξ ∈ A
w∗

, A meets
ξ + V1/(n+1),f1,...,fkn+1

. Take any an+1 ∈ A ∩ (ξ + V1/(n+1),f1,...,fkn+1
). Then

an+1 ∈ A and further |⟨ξ − an+1, fi⟩| < 1/(n + 1) for all i = 1, . . . , kn+1. By
assumption, (an) has a weak accumulation point a ∈ X. We show now ξ = a,
let Y = span{a1, a2, . . . , a3}. Y ⊂ X, and a ∈ Y

w
= Y . Then if we consider

Y ⊂ B = {ξ, a1, a2, . . .} ⊂ X∗∗, so Y ⊂ B, so a ∈ B. Also, ξ ∈ B. So
ξ − a ∈ B. We can find ζ ∈ B such that ∥ζ − (ξ − a)∥ ≤ (1/4) ∥ξ − a∥, WLOG
∥ζ∥ = ∥ξ − a∥. Since ζ ∈ B, ζ ∈ span{ξ, a1, . . . , an} for some n, by (a), find
j ≤ kn+1 such that ⟨fj , ζ⟩ ≥ (1/2) ∥ζ∥ = (1/2) ∥ξ − a∥. Then we can write

⟨fj , ζ⟩ = ⟨fj , ζ − (ξ − a)⟩+ ⟨fj , ξ − a⟩ ≤ (1/4) ∥ξ − a∥+ ⟨fj , ξ − a⟩ ,

so ⟨fj , ξ − a⟩ ≥ (1/4) ∥ξ − a∥. Let ε > 0, since a is a weak accumulation point
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of (an) we can find infinitely many am’s in a+ Vε,fj . This precisely means that
|⟨fj , a− am⟩| < ε. When m > j, then we have |⟨fj , ξ − a⟩| ≤ |⟨fi, ξ − am⟩| +
|⟨fj , a− am⟩| ≤ 1/m+ε. Since this is true for infinitely manym, |⟨fj , ξ − a⟩| ≤ ε.
By the earlier remark, (1/4) ∥ξ − a∥ < ε. Since ε is arbitary, ξ = a.

Corollary 12. A is weakly compact iff every seqeuence in A has a subsequence
which convergences to an element in A.

Proof. If A is weakly compact, then it is definitely relatively weakly compact,
so by E − S theorem (the above), every sequence in A has a weakly convergent
subsequence in X, but since A is weakly compact, it is weakly closed, and thus
this subsequence has limit in A.

For the reverse, use E − S theorem to prove that A is relatively weakly

compact. It is left to show that it is weakly closed. Take ξ ∈ A
w∗

, argue as
in the proof above that ξ is the weak limit of a sequence in A (write it down
carefully).

Corollary 13. A is relatively weakly compact iff every countable subset of it is.

Proof. The forward is trivial. For the reverse, every countable subset of A is
relatively weakly compact, hence it is a weak accumulation point, so by E − S
theorem, A is relatively weakly compact.

This is useful because we can always assume WLOG that A is countable to
prove that it is.

Corollary 14. X is reflexive iff every bounded sequence has a weakly convergent
subsequence.

Proof. X is reflexive iff BX is weakly compact iff (by E − S) every sequence in
BX has a weakly convergent subsequence.

Recall from homework, BX is always weakly closed, because if xα −→w x
then ∥x∥ ≤ lim inf ∥xα∥. This implies BX is weakly compact iff BX is relatively
weakly compact. MIDTERM CUTOFF
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Now we state the Dunford-Pettis theorem (without proof). We know that
relatively weakly compact implies bounded. For reflexive spaces relatively weakly
compact sets are precisely the bounded ones. How do bounded sets look like in
non-reflexive spaces, say L1(µ)? Here is an example of a bounded set in L1(µ)
that is not relatively weakly compact. Let (An) be a disjoint sequence of mea-
surable sets, µ(An) −→ 0. Denote fn = the normalized characterized functions
of An. fn = 1

µ(An)
χAn . Definitely this sequence is bounded because ∥fn∥ = 1.

(fn) does not converge weakly though. Let g = 1 on A2n and −1 on A2n−1

and 0 elsewhere. Then g ∈ L∞, ∥g∥ = 1. Then ⟨g, f2n⟩ = 1, ⟨g, f2n−1⟩ = −1,
so ⟨g, fn⟩ does not converge, so (fn) does not converge weakly. Let F = {fn}.
Similarly, no subsequence of (fn) is weakly compact. This proves that F is not
realtively weakly compact by E − S theorem. F is bounded but not relatively
weakly compact. Recall from measure theory, if f ∈ L1(µ) then for every ε > 0
there exists δ > 0 such that µ(A) < δ then

∫
A
|f | < ε. On the other hand this

property fails for a family of functions (example above).

Definition 30. A set of functions F is uniformly integrable (or equi-integrable)
if the above condition is true, but uniformly. That is, ε > 0 there is δ > 0 such
that for all f ∈ F one has

∫
A
|f | < ε.

Definition 31. For f, g ∈ L1(µ), f ≤ g if f(t) ≤ g(t) a.e.

We define an order interval of L1(µ) as [f, g] = {h ∈ L1(µ) : f ≤ h ≤ g}, for
f ≤ g. We say that a subset F of L1(µ) is order bounded if it is contained in an
order interval ⇐⇒ ∃h ≥ 0 : F ⊂ [−h, h]. F is almost order bounded if ∀ε > 0
there is h ≥ 0 such that F ⊂ [−h, h] + εBX .

Define an operator T : ℓ1 −→ L1[0, 1] via Ten = fn. Then T is an isomet-
ric embedding.∥∥∥T∑(αiei)

∥∥∥ =
∥∥∥∑(αifi)

∥∥∥ =
∑

|αi| =
∥∥∥∑(αiei)

∥∥∥ .
We call the embedding the isomorphic copy of ℓ1.

Theorem 32 (Dunford-Pettis Theorem). Let F be a bounded subset of L1(µ),
for µ finite. The following are equivalent, A is relatively weakly compact, and A
is uniformly integrable, F is almost order bounded. F contains no isomorphic
copy of the unit vector basis of ℓ1 (algebraic). For every disjoint sequence (An)
of measurable sets,

∫
An

|f | −→ 0 in n uniformly on f ∈ F , For every disjoint

bounded positive sequence (gn) in L∞(µ) = L1(µ)
∗, ⟨gn, f⟩ −→ 0 uniformly on

f ∈ F .

We remark that the fifth condition is a special case of the sixth by taking
gn = χAn

. The DP theorem remains valid for infinite measures, but (2) has to
be adjusted.

Definition 32. Recall, T ∈ L(X,Y ) is compact if TBX is relatively compact
in Y . Equivalently, for every bounded sequence (xn) in X, the sequence (Txn)
has a convergence subsequence.
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Lemma 33. If T is compact and xn −→w x ∈ X, then Txn −→∥ · ∥ x.

Proof. Suppose that T is compact, xn −→w 0, then Txn −→w 0. Since (Txn)
has a norm convergent subsequence, Txnk

−→ y, but Txnk
−→w y, so y = 0 by

uniqueness of limits. Hence Txnk
−→ 0. Similarly, for every subsequence (xnm

)
of (xn) there is a further subsequence (a) = (xnmk

) such that Ta −→ 0. Then
Txn −→ 0.

Recall, that we are using xn −→ a ⇐⇒ ∀nk,∃nkm
such that xkn

−→ a.
Further suppose that X is reflexive. If xn −→w 0, then Txn −→ 0. Let (xn)
be a bounded sequence in X. By E − S theorem, (xn) has a weakly convergent
subsequence xnk

−→w x. By assumption Txnk
−→ Tx, so T is compact. These

operators without the property that X is reflexive are called Dunford-Pettis
operators.

Definition 33. If T ∈ L(X,Y ), we say that T is weakly compact if TBX is
relatively compact in Y .

It follows immediately from E − S theorem that T is weakly compact iff for
every bounded sequence (xn), (Txn) has a weakly convergent subsequence.

If Y is reflexive, then every operator T ∈ L(X,Y ) is weakly compact be-
cause TBX is bounded, hence relatively weakly compact. If X is reflexive, then
every T ∈ L(X,Y ). For each bounded sequence (xn) in X, there is a weakly
convergent subsequence, xnk

−→w x, then Txn −→w x. Given

X −→T Y −→S Z,

we see that ST is weakly compact if S or T is.

Lemma 34. If T factors through a reflexive Banach space, then T is weakly
compact.

In L(X), weakly compact operators form a two-sided ideal.

Example 22. Consider ι : ℓ1 −→ ℓ∞, the inclusion map. ι is bounded, but
ι is not compact because (ιen) has no convergent subsequences. However ι is
weakly compact, since we can write ℓ1 −→ ℓ2 −→ ℓ∞, and ℓ2 is reflexive

Recall, X is a Banach space. A sequence {ek} in X is called a Schauder
basis if every vector x ∈ X admits a unique expansion x =

∑∞
k=1 akek. The

n-th basis projection Pn(
∑∞

k=1 akek) =
∑n

k=1 akek. Pn : X −→ X with the
range of Pn equal to span{e1, . . . , en}. P 2

n = Pn. ALl P ′
ns are bounded, even,

uniformyl bounded : K = sup ∥Pn∥ < ∞. K is called the basis constant of {ek}.
If n ≤ m, α1, . . . , αm one has∥∥∥∥∥

n∑
k=1

akek

∥∥∥∥∥ ≤ K

∥∥∥∥∥
m∑

k=1

akek

∥∥∥∥∥ .
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K = 1 iff ∀n ≤ m one has ∥
∑n

k=1 akek∥ ≤ ∥
∑m

k=1 akek∥. Note that K ≥ 1
because projections always have norm bigger than 1. In this case we say that
(ek) is a monotone basis. The unit vector basis of c0 and ℓp 1 ≤ p < ∞ are
monotone. It follows from the proof thaof the theorem last time that given any
Schauder basis {ek} we can renorm the space ∥x∥ = supn ∥Pnx∥, so that ek is
monotone in (X, ∥ · ∥). Let {ek} be a basis. For each k define e∗k : X −→ F via
e∗k(
∑∞

k=1 αkek) = αk. e
∗
k is linear functional (easy). Furthermore

αnen = Pnx− Pn−1x

which implies

∥αnen∥ ≤ ∥Pnx∥+ ∥Pn−1x∥ ≤ K ∥x∥+K ∥x∥ = 2K ∥x∥ .

But on the other hand ∥αnen∥ = |αn| ∥en∥ = |e∗n(x)| ∥en∥. Further |e∗n(x)| ≤
2k∥x∥
∥en∥ so e∗n is bounded.

Example 23. Let X = c0 or ℓp 1 < p < ∞. Then X∗ = ℓ1 (resp ℓp∗). Then
(e∗k) is the standard unit basis of X∗, in particular it is again a basis. On the
other hand if X = ℓ1 then X∗ = ℓ∞. But (e∗k) is not a basis of X∗ because X∗

is not seperable.

We know that if (ek) is a basis, then (ek) is linearly independent and [ek] =
X. The converse is false. For an example let X = ℓp (1 ≤ p < ∞) or c0. Let
(ek)

∞
k=1 be the unit vector basis. Let e0 ∈ X be any vector with all non-zero

coordinates, say e0 = (1/2, 1/4, 1/8, . . .). Consider (ek)
∞
k=0. Then [ek]

∞
k=0 = X

and (ek)
∞
k=0 is linearly independent, but (ek) is not a basis because we have two

different expansions. What is the proper way to go back?

Theorem 35. Let (ek) be a sequence in X. The following are equivalent (1):
(ek) is a basis. (2) : ek ̸= 0 for every k, [ek] = X and there exists K ≥ 1 such
that ∀n ≤ m, α1, . . . , αm ∥∥∥∥∥

n∑
k=1

αkek

∥∥∥∥∥ ≤ K

∥∥∥∥∥
m∑

k=1

αkek

∥∥∥∥∥ .
Proof. (i) =⇒ (ii) we already did. (ii) =⇒ i, we want to verify that (ek) is
linearly independent: Suppose that

∑m
k=1 αkek = 0. Apply the basis inequality

with n = 1. Then ∥α1e1∥ ≤ K ∥
∑m

k=1 αkek∥ = 0, so α1 = 0. Similarly,
α2 . . . , αm = 0. Put Y = span{ek}, Y = [ek] = X, Y is dense in X. For

each n define Pn : Y −→ span(e1, . . . , em) by Pn(
∑m

k=1 αkek) =
∑minm,n

k=1 αkek
then Pn is bounded and linear. Linear is easy, but bounded because if x ∈ Y
then x =

∑m
k=1 αkek. If n ≥ m then Pnx = x so ∥Pnx∥ = ∥x∥. If n ≤ m then

∥Pnx∥ ≤ K ∥x∥ so ∥Pn∥ ≤ K. Pn extends to a bounded opeartor onX, which we
will still denote by Pn. Then ∥Pn∥ ≤ K and Pn : X −→ span(e1, . . . , en). Then
PnPm = Pminm,n = PmPn on Y , hence, by the uniqueness of the extension on

X, also on X. Fix x ∈ X, n ∈ N. Pnx ∈ spane1, . . . , en+1, Pn+1x =
∑n+1

k=1 αkek.
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Then Pnx = PnPn+1x = Pn(
∑n+1

k=1 αkek) =
∑n

k=1 αkek. For each n Pnx is the
initial segemnt of Pn+1x. This means that there exists an infinite sequence
(ak)

∞
k=1 such that Pnx2e =

∑∞
k=1 αkek.

Recall from last time: a seuqence (ek) in a Banach space X is a basis iff
ek ̸= 0 for all k and [x] = X and there is K ≥ 1 such that for all n ≤ m,
α1, . . . , αm: ∥∥∥∥∥

∞∑
k=1

akek

∥∥∥∥∥ ≤ K

∥∥∥∥∥
m∑

k=1

αkek

∥∥∥∥∥ .
The least such K is the basis constant of (ek).

Example 24. We have a Schauder basis for C[0, 1]. Indeed let (ak) be the
dyadic sequence (1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, . . .). This is called
the Schauder basis

{f0, f1, . . . , fn},
(see Lecture pictures) spans all piece-wise affine functions with nodes at d1, . . . , dn.
This has basis constant 1. They are also linearly independent.

Example 25. Consider C[0, 1]. Let fn(t) = tn. Then span(fn) = all polyno-
mials. By Stone Weierstrass, [fn] = C[0, 1]. This is not a basis. If h ∈ C[0, 1].
If it were a basis then h(t) =

∑∞
k=0 akt

k, uniformly convergent series which by
calculus is differentiable.

Example 26. Consider the Haar basis in Lp[0, 1] for 1 ≤ p < ∞. Recall the
Rademacher sequence (rn). Define h0 = r0, h1 = r1, h2 = first half of r2 and
h3 is second half. Then h2 + h3 = r2. Then split r3 into four pieces and define
h4, h5, h6, h7 in this way. Then hk = f ′

k, up to a scalar multiple where (fk)
is THE Schauder basis. If n < m then either their supports are disjoint, so
hnhm = 0, or hnhm = ±hn. In either case,∫

hnhm = 0.

Thus in L2[0, 1] (hk) is an orthogonal sequence. (hk) satisfies the basis inequality
with K = 1 because t −→ tp is a convex function. It is left to show that
[hk] = X. Indeed, note that all dyatic intervals are in the span (characteristic
functions). For example, 1

2 (h0 + h1) = χ[0,1/2]. All simple functions are of the
form a finite sum with dyadic intervals are in [hk] and as an exercise thse simple
functions are dense in all simple functions, but simple functions are dense in Lp.

Example 27. What is Pn for the Haar basis? For f ∈ Lp[0, 1], Pnf = E(f, Fn)
where Fn is the n-th dyadic σ-algebra, the σ-algebra generated by h0, . . . , hn.

A basis is defined in topological terms, so it is an isomorphic concept, mean-
ing that if you renorm the space, then a basis stays a basis (but the basis
constant may change). If (xn) is a basis in X and T : X −→ Y a surjective
isomorphism, then (Txn) is a basis in Y . Does every seperable Banach space
have a basis? Enfo: NO.
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Definition 34. A sequence (xn) in X is a basic sequence if it is a basis of a
closed subspace. Then the subspace has to be [xn].

A non-zero sequence (xn) is basic iff there exists K ≥ 1 such that for all
n > m and α1, . . . , αm one has∥∥∥∥∥

n∑
k=1

αkxk

∥∥∥∥∥ ≤ K

∥∥∥∥∥
m∑

k=1

αkxk

∥∥∥∥∥ .
Some examples, if X = ℓp for 1 ≤ p < ∞ or c0 and xn = e2n then (xn)
is a basic sequence, (xn) is a basis for the even components. Mor egenerally,
every subsequence of a basis is a basic sequence. Even more generally, every
usbequence of a basic sequence is basic.

Example 28. Take X = ℓ∞, (en) to be the unit vectors in ℓ∞. Then [en] = c0
(en) is a basis of c0, so (en) is a basic sequence in ℓ∞ (but not a basis).

Example 29. Take H to be a Hilbert space (xk) and orthogonal non-zero
sequence. Then (xk) is a basis of [xk] so (xk) is a basic sequence in H.

Example 30. Let (xn) be a sequence in X. A block sequence is a sequence split
up into blocks of any finite size, for example y1 = 3x1+3x2+7x3, y2 = 10x4+x5,
y3 = −x6.

More formally, given a sequence (xn). An increasing sequence (nk) in N
and an sequence (αn) of scalars, put yk =

∑nk+1−1
i=nk

αixi. Then (yk) is a block
sequence.

A block sequence of a basic sequence is again a basic sequence (hint, it sat-
isfies the basis inequality).

Let X and Y be two Banach spaces. Fix a basic sequence (xn) in X and
T : [xn] −→ Y an isometric isomorphism. If we think of T : [xn] −→ im(T ) =
[Txn] then we have a surjective isomoprhism, so (Txn) is a basis of Range T ,
hence a basic sequence. If yn = Txn we say that (yn) ∼ (xn).

Lemma 36. Let (fn) be a normalized disjoint sequence in Lp(µ) 1 ≤ p < ∞.
Define T : ℓp −→ Lp(µ) by T (

∑∞
k=1 αkek) =

∑∞
k=1 αkfk.

Define Tek = fk and extend T to c00 by linearity. Then∥∥∥∥∥T (
n∑

k=1

αkek)

∥∥∥∥∥
p

=
∥∥∥∑αkfk

∥∥∥p =
∑

|αk|p .

So T is an isometry, so T extends to an isometry for ℓp to Lp(µ) and T (
∑∞

k=1 αkek) =∑∞
k=1 αkfk. This implies that (fn) is a basic sequence in Lp(µ) and is equivalent

to the unit vector basis on ℓp.
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If instead of normalized, we assume a weaker condition that (fn) is semi-
normalized, that is there exists C1, C2 > 0 such that for all n, C1 ≤ ∥fn∥ ≤ C2

then we can still do a similar computation to obtain that T is an isomorphism.
[fn] is an isomorphic copy of ℓp in Lp(µ).

Lemma 37. Let (xn) be a basic sequence in X. The following are equivalent:
(yn) is a basic sequence equivalent to (xn). There exists a surjective isomorphism
T : [xn] −→ [yn] such that Txn = yn. (yn) is basic and for every sequence (αk)
of scalars

∑∞
k=1 αkxk converges iff

∑∞
k=1 αkyk converges. There exists C > 0

such that for all m,α1, . . . , αm such that

1

C

∥∥∥∥∥
m∑

k=1

αkxk

∥∥∥∥∥ ≤

∥∥∥∥∥
m∑

k=1

αkyk

∥∥∥∥∥ ≤ C

∥∥∥∥∥
m∑

k=1

αkxk

∥∥∥∥∥ .
Proof. i =⇒ iii is trivial. iii =⇒ ii, suppose we have iii, suppose (yn) is
basic. Suppose

∞∑
k=1

αkxk

converges. This means

(

n∑
k=1

αkxk)n

converges, hence Cauchy, so ∥∥∥∥∥
m∑

k=n

αkxk

∥∥∥∥∥ −→ 0

as m,n −→ ∞. By iii one has ∥∥∥∥∥
m∑

k=n

αkyk

∥∥∥∥∥ −→ 0

as m,n −→ ∞. Two ii =⇒ i, we define T : [xn] −→ [yn] via T (
∑∞

k=1 αkxk) =∑∞
k=1 αkyk. By ii, T is well-defined, linear, and bounded by closed graph the-

orem. WLOG [xn] = X and [yn] = Y , otherwise just replace [xn] with X and
stuff. Suppose that um −→ 0 ∈ X and Tum −→ v ∈ Y . We want to show that
v = 0. Then um =

∑∞
k=1 α

m
k xk. v =

∑∞
k=1 βkyk. For each n we know that x∗

n is
continuous, so x∗

n(um) = αm
n −→ x∗

n(0) = 0, hence, αm
n −→m 0 for each n. Then

Tum = T (
∑∞

k=1 α
n
kxk) =

∑∞
k=1 α

m
k yk but αm

n = y∗m(Tum) −→ yn(v) = βn.
This implies βm = 0 for all m, so v = 0. By closed graph T is bounded, by
definition T is onto, T is one-to-one. By Banach’s theorem (open mapping), T
is an isomorphism.

Corollary 15. Let (xn) and (yn) be two equivalent basic sequences (possibly in
different spaces). If xn is weakly null then yn is weakly null.
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Proof. Let T be as in proposition. Txn = yn. T is bounded, hence w-to-w
continuous.

Recall, a seuqence (xn) in a Banach space is absic if it is a basis of a closed
usbspace. Equivalently it is a basis of [xn]. Two basic sequences of (xn) and
(yn) are equivalent (xn) ∼ (yn) if there is a surjective isomorphism T : [xn] −→
[yn], Txn = yn. Equivalently (xn) and (yn) have the same convergent series.
Equivalently there is C > 0 and for all α1, . . . , αn such that

1

C

∥∥∥∥∥
n∑

k=1

αkxk

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

k=1

αkxk

∥∥∥∥∥ ≤ C

∥∥∥∥∥
n∑

k=1

αkxk

∥∥∥∥∥ .
Every normalized or even seminormalized disjoint sequence in Lp(µ) is equiva-
lent to the unit vector basis of ℓp for 1 ≤ p < ∞. We move onto an application
now: Let (rn)

∞
n=1 be the Rademacher sequence without r0 = 1. (rn) is a block

sequence of the Haar basis, so (rn) is a basic sequence. For t ∈ [0, 1] consider
its binary expansion t = 0.b1b2b3 . . ., t =

∑∞
k=1

bk
2k

for bk ∈ {0, 1}. This expan-
sion is unique almost everywhere except a countable set. One sees that rk(t)
is essentially the k−th binary digit at t. For each n, we can think of rn as a
random variable taken ±1 with probability 1/2. r′ns are independent. Fix n
and consider r1, . . . , rn. They generate a dyatdic partition of [0, 1] into 2n equal
subintervals. On these subintervals r′ks yield all possible choices of signs. Fix in
addition scalars α1, . . . , αn and consider f =

∑n
k=1 αkrk on the first subinterval

f(t) = α1 + . . . + αn. On the second f(t) = α1 + α2 + . . . + αn−1 − αn and
so on. We get all possible choices of

∑
±(±αk) for all possible choices of sings

with equal probabilities.

Theorem 38 (Khinchin’s Inequality). For each 1 ≤ p < ∞ there exists Ap, Bp >
0 such that for all α1, . . . , αn then

Ap

( ∞∑
k=1

|αk|2
)1/2

≤

∥∥∥∥∥
n∑

k=1

αkrk

∥∥∥∥∥
Lp[0,1]

≤ Bp

( ∞∑
k=1

|αk|2
)1/2

In particular, as a basic sequence (rk) is equivalent to the unit vecotr basis
of ℓ2. In particular, there is an isomorphic embedding Tp : ℓ2 −→ Lp[0, 1] where
Tpen = rn and Tp (

∑∞
k=1 αkek) =

∑∞
k=1 αkrk. Let Radp = imTp = [rn] in

Lp[0, 1]. Since T is an isomorphism Radp ∼= ℓ2 and hence Radp ∼= Radq for
p, q ∈ [1,∞).

Lemma 39. Radp does not depend on p as a set. On Rad all Lp norms are
equivalent.

Proof. See my pictures.

What happens when p = ∞? Then the rademacher sequence rn ∈ L∞[0, 1]
is equivalent to the unit vector basis of ℓ1 and ∥

∑∞
k=1 αkrk∥∞ =

∑∞
k=1 |αk|.
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1.2 Complemented Subspaces

If X is a vector space and Y is a subspace then there exists a subspace Z ⊂ X
such that X = Y ⊕ Z. That is, X = Y + Z and Y ∩ Z = {0}. Z is not unique.
For each x ∈ X there exists unique y ∈ Y and z ∈ Z such that x = y+z. Define
P : X −→ X by P (x) = y. Then P : X −→ X, imP = Y and kerP = Z. Then
P 2 = P and P is the projection onto Y along Z. I − P is the projection onto
Z along Y .

We want to consider closed subspaces now. Let Y be a closed subspace of
X, it may be impossible to find a closed subspace Z of X such that X = Y ⊕Z.
If such a closed subspace Z exists we say that Y is complemented in Z. If X
is a Banach space then X = Y ⊕ Z for two linear subspacews. Let P be the
corresponding projection. Then P is continuous iff both Y and Z are closed.

Proof. Z = kerP and Y = ker(I − P ). We used the closed graph thoerem to
xn −→ 0 ∈ X. Then (Pxn) is in Y , Y is closed, so y ∈ Y . Then xn − Pxn =
(I − P )xn in Z. Then xn − Pxn −→ 0− y = −y so y ∈ Z, so y = 0.

Question, for every Banach space X are there two infinite dimensional spub-
spaces Y and Z such that X = Y ⊕Z or in other words is X decomposable? Is
every Banach space decomposable? No. GRowers and Mayrey found a banach
space which is indecomposible, moreover every infinite dimensional dclosed sub-
space of it is also indecomposable. X is herediarily decomposible (that is what
we call it).

Recall, if X is a Banach space and X = Y ⊕Z the direct sum of subspaces,
P is the projection onto Y along Z. Then P is continuous iff both Y and Z
are closed. A closed subspaces Y of X is complemented if X = Y ⊕Z for some
closed subspace Z of X. Equivalently, Y is the range of a continuous projection.
X/Y is again a Banach space but X ∼= Y ⊕ (X/Y ) but X/Y is not a subspace
of X.

Example 31. In a Hilbert space, every closed subspace is the range of an
orthogonal projection; hence complemented.

Example 32. Every finite dimensional subspace is complemented.

Example 33. If X = Lp(µ) = Lp(Ω, F, µ) let Ω ∈ F . Then Y = {f ∈ X :
suppf ⊂ Ω} ∼= Lp(Ω, µ). Y is complemented, take P : X −→ X, Pf = fχΩ,
a special case of (3) where we take X = ℓp or c0 and Ω ⊂ N. For x = (xi) in
X define (Px)i = {xi if i ∈ Ω} and 0 otherwise. Then Y = im(P ) = {x ∈ X :
suppx ⊂ Ω}.

Example 34. Let X = Lp(µ) for 1 ≤ p < ∞. (fn) is a disjoint normal-
ized sequence in X. We already know that (fn) is a basic sequence, (fn) ∼
uvb of ℓp. Then [fn] ∼= ℓp. We claim that [fn] is complemented in X. The
sketch is to find a dsjoint sequence of sets (An) such that supp(fn) ⊂ An.
fn ∈ Lp(An) and thus Lp(An)

∗ = Lq(An) where q = p∗. Find gn ∈ Lq(An)
where ∥gn∥q = 1 = ⟨gn, fn⟩, we may view gn ∈ Lq(Ω). Verify that for each
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f ∈ Lp(µ) one has
∑

⟨f, gn⟩ fn converges in Lp(µ). Then denote the sum by
Pf . P : X −→ X is a bounded projection whose range is [fn].

What happens when p = ∞? then [fn] ∼= c0. Is it complemented even in the
special case of X = ℓ∞?

Theorem 40. c0 is not complemented in ℓ∞.

Proof. Skip, but interesting to see.

What is the space ℓ∞/c00, it is precisely those seuqences xn ∼ yn such that
xn − yn −→ 0

If Y ⊂ Z ⊂ X is complemented in X then it is complemented in Z.

Theorem 41. X∗ is complemented in X∗∗∗.

Proof. ι : X −→ X∗∗ and k : X∗ −→ X∗∗∗ the canonical inclusions. Then
X∗∗∗ −→ X∗ −→ X∗∗∗ is a projection map with the range being X∗.

Theorem 42. For 1 < p < ∞. Rad is complemented in Lp[0, 1]. For p =
2. Trivial, L2[0, 1] is a Hilbert space. Every closed subspace is complemented.
(rn) is anorhtonormal basis for Rad2 and we can explicitly write the orthogonal
projection from L2[0, 1] onto Rad.

Pf =

∞∑
n=1

⟨f, rn⟩ rn.

For 2 ≤ p < ∞ Lp[0, 1] is a subset of L2[0, 1] and ∥ · ∥2 ≤ ∥ · ∥p . One has the
maps

Lp −→ L2 −→ Rad2 ∼= Radp.

This gives us a continuous projection from Lp onto Radp. When 1 < p < 2
let f, g ∈ L2 then we can write ⟨Pf, g⟩ =

∑∞
m=1 ⟨f, rn⟩ ⟨g, rn⟩ = ⟨f, Pg⟩ =∫

fPg dx. Let q = p∗. Then 2 < q < ∞. Lq ⊂ L2 ⊂ Lp. Let f ∈ L2 and
g ∈ Lq. Then g ∈ L2 so ⟨Pf, g⟩ ≤ ∥f∥p ∥g∥q . Then we know that P : Lq −→
Lq is bounded and say C = ∥P∥ so ⟨Pf, g⟩ ≤ ∥f∥p C ∥g∥ and thus ∥Pf∥p =
sup ⟨Pf, g⟩ ≤ C ∥f∥p. For all f ∈ L2 ∥Pf∥p ≤ C ∥f∥p. L2 is dense in Lp so

P extends to a continuous operator P̃ : Lp −→ Lp. p̃ is still a projection and
imP = Rad2 = Radp.

Theorem 43 (Mazur). Every Banach space has a basic sequence. That is, it
has a closed subspace with a basis.

The idea is in a Hilbert space we can pick e1 ̸= 0 and find e2 orthogonal
to e1, find e3 orthogonal to span(e1, e2). This yields an orthogonal sequence,
hence a basis.

Lemma 44. Let Y be a finite dimensional subspace of X. Let ε > 0. Then there
exists non-zero x ∈ X such that for all y ∈ SY the straight line {y+λx : λ ∈ F}
does not meer (1− ε)BX .
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Proof. Since Y is finite dimensional, SY is compact so we can find an epsilon
net {y1, . . . , ym} for SY . For each i = 1, . . . ,m by Hahn-Banach we can find
a functional fi ∈ SX∗ such that fi(yi). Then

⋂
ker fi is of finite codimension,

so non-trivial. Take any non-zero x ∈
⋂

ker fi. Then fi(X) = 0 for all i.
Let ySY . Find i such that ∥y − yi∥ < ε. So for every λ ∈ F one then has
1 = fi(yi) = fi(yi+λx) ≤ ∥fi∥ ∥yi + λx∥ ≤ ∥yi − y∥+∥y + λx∥ ≤ ε+∥y + λx∥ .
This means ∥y + λx∥ ≥ 1− ε.

This means for all y ∈ Y ∥y + λx∥ ≥ (1− ε) ∥y∥ .

Theorem 45 (Mazur). For every K > 1 every Banach space X contains a
basic sequence with basis constant ≤ K.

Proof. Fix K > 1. Let εn −→ 0 so fast that
∏∞

n=1(1 − εn) > 1/k. Take any
non-zero x1. Put Y = span(x1) and apply Lemma to Y and ε1 to get x2. Put
Y2 = span(x1, x2). Iterate. Claim is that {xn} is basic with basis constant ≤ K.
It suffices to show the basis inequality. Let n < m and α1, . . . , αm ∈ F . Then
∥α1x1 + . . .+ αmxm∥ ≥ (1 − εm) ∥α1x1 + . . .+ αm−1xm−1∥ ≥ (1 − εm)(1 −
εm−1) · . . . · (1− εn+1) ∥α1x1 + . . .+ αnxn∥ ≥ 1/K ∥α1x1 + . . .+ αnxn∥ .

Theorem 46. Let S ⊂ X such that 0 ∈ S
w \ S. Then for every K > 1, S

contains a basic sequence iwth constant ≤ K.

We skip proof.

Corollary 16. If (xn) converges to zero weakly but not in norm then it has a
basic subsequence.

Proof. Passing to a subsequence, xn is bounded below. Take S = {xn} and
apply the above.

1.3 Unconditionally Convergent Series

Theorem 47. Given a sequence (xn) ⊂ X. The following are equivalent: The
sum

∞∑
n=1

αnxn

converges for any bounded (αn).

∞∑
n=1

αnxn

converges for αn such that |αn| = 1.

∞∑
n=1

±xn
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converges.
∞∑
k=1

xnk

converges.
∞∑

n=1

xσ(n)

converges for every bijection σ.
For all ε > 0 there is N such that for all finite A with minA ≥ A one has∥∥∥∥∥∑

n∈A

xn

∥∥∥∥∥ < ε.

∞∑
n=1

|f(xn)|

converges for f in SX∗ .

Again given this we say that xn converges unconditionally.

Remark 1. Suppose
∑∞

k=1 xk converges unconditionally. Then the set

{sum∞
k=1αkxk : |αk| ≤ 1}

is norm bounded.

Indeed, take ε = 1. We can find n such that for all m > n and all f ∈ BX∗

one has
m∑

k=n

|f(xk)| < 1.

Let (αk) be such that |αk| ≤ 1 for all k. Then by Hahn-Banach there exists
g ∈ SX∗ such that∥∥∥∥∥

m∑
k=n

αkxk

∥∥∥∥∥ =

∣∣∣∣∣f
(

m∑
k=n

αkxk

)∣∣∣∣∣ ≤
m∑

k=n

|f(xk)| ≤ 1

so letting m −→ ∞ we obtain ∥∥∥∥∥
∞∑

k=n

αkxk

∥∥∥∥∥ ≤ 1

. Also, ∥∥∥∥∥
n−1∑
k=1

αkxk

∥∥∥∥∥ ≤
n−1∑
k=1

∥xk∥ .

In particular this means that∥∥∥∥∥
∞∑
k=1

αkxk

∥∥∥∥∥ ≤
n∑

k=1

∥xk∥+ 1.
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Remark 2. In (v) we say that every permutation converges. Further, the sums
will be all the same (hint, use 6).

Definition 35. A basis (ek) is said to be unconditional if the basis expansions
converge unconditionally for every x ∈ X, we know that

x =

∞∑
k=

αkek

is unique. But further we require in addition that this series converges uncon-
ditionally.

Example 35. (ek) =uvb of ℓp or c0 (1 ≤ p < ∞) then
∑

|αk|p converges iff∑
|±αk|p converges.

Let (ek) be an unconditional basis. Fix λ = (λk) ∈ ℓ∞ and suppose ∥λ∥∞ =
1. Let x ∈ X. Expand x =

∑∞
k=1 αkek. This series converges unconditionally.

Then ∥∥∥∥∥
∞∑
k=1

λkαkek

∥∥∥∥∥
also converges. Denote this sum by Tλx. Clearly T is linear. Thus, we can view
X as a sequence space and Tλ is a diagonal operator. We know that T is well
defined by what we had done before. Not only is it well defined, but we claim
also that it is bounded. Here we use closed graph theorem. If x(m) −→ 0 and

Tx(m) −→ u then x(m) =
∑∞

k=1 α
(m)
k ek and so Tx(m) =

∑∞
k=1 λkα

(m)
k ek and

u =
∑∞

k=1 βkek. Then e∗k is continuous for each k so x(m) −→ 0 implies α
(m)
k =

e∗k(x
(m)) −→ 0 so α

(m)
k −→ 0. Then Tx(m) −→ u implies e∗k(Tx

(m)) −→ e∗k(u)

which implies λkα
(m)
k −→ βk and so βk = 0 and so u = 0.

Further, we claim that {Tλ : λ ∈ Bℓ∞} is uniformly bounded. This is just
use uniform boundedness-principle. If we denote M = supλ ∥Tλ∥ we say that
M is the unconditional basis constant of (ek).

If (ek) is an unconditional basis with basis constant M and then every
bounded seqeuence yields (λk) yields a bounded operator ∥Tλ∥ ≤ M ∥λ∥∞.
For a special case, for λ ∈ ℓ∞ where λk’s are zeros and ones then we define
λi = 1 if i ∈ A and 0 o/w. Then Tλ = PA where PAek = ek if k ∈ A and 0
otherwise. One has

PA

( ∞∑
k=1

αkek

)
=
∑
k∈A

αkek.

Then PA is a projection where ∥PA∥ ≤ M. In particular X has many projec-
tions and any complemented subspaces. For example if [e2k] = RangePA where
A = 2N is a complemented subspace.

Let X be a Banach space with a Schauder basis. We view X as a sequence
space and can order X coordinate wise saying

∑
αkek ≤

∑
βkek if αk ≤ βk
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for all k. This is a partial order and linear in the sense that if x ≤ y then
λx ≤ λyfor all λ ≥ 0 and x+ z ≤ y+ z for all z. In general, this is not a lattice
order and it does not respect the norm structure. Suppose in addition that we
have a 1-unconditional basis (ek). Then x ∨ y =

∑
max{αk, βk}ek and x ∧ y is

similar. X becomes a vector lattice under |x| =
∑∞

k=1 |αk| ek =
∑∞

k=1 λkαkek
where λk = |αk| /αk and moreover is a Banach lattice. Moreover, ∥|x|∥ = ∥x∥
and the norm is monotone. X then becomes a Banach lattice.

1.4 Bits and Pieces on Classical Banach Spaces

Recall from Hahn-Banach theorem that if X is a normed space and Y is a sub-
sapce where f : Y −→ k is linear and bounded. We can extend it to f̂ : X −→ k

where
∥∥∥f̂∥∥∥ = ∥f∥. From Math 418 we can replace k with ℓ∞ = ℓ∞(Γ) where Γ

is any set.

Now we ask questions about universal spaces. Let X be a Banach space. We
know that X embeds into X∗∗ and thus K = BX∗ is weak* compact. Consider
x̂ ∈ X∗∗ restricted to BX∗ . The map S : X −→ C(K) given by x −→ x̂|BX∗ is
an isometric embedding. This means that every Banach space is a closed sub-
space of some C(K) space, where K depends on X. If we assume in addition
that X is seperable then we proved at some point that (BX∗ , w∗) is metrizable.
A result from topology states that every compact metric space is a continuous
image of the Cantor set ∆. There exists a continuous map F : ∆ −→ K which
is onto. This induces an isometry C(K) −→ C(∆) given by f −→ f ◦ F. This
means that the new map X −→ C(∆) is an isometric embedding into C(∆),
so now the dependence on K is not needed. Using the fact that ∆ ⊂ [0, 1] is
dense in [0, 1] we get that X −→ C[0, 1] by continuous extension. Thus every
seperable Banach space is a closed subspace of C[0, 1]. In some sense C[0, 1] is
a “universal” seperable Banach space.

A related fact is that ℓ∞ contains every seperable Banach space (but is itself
not seperable).

Proof. Let X be a seperable Banach space. Then at some point we showed
that BX∗ is weak* seperable. Let (fn) be a dense sequence in BX∗ define
T : X −→ ℓ∞ by Tx = (fn(x)). This map is linear.

∥Tx∥ = sup
n

|fn(x)| = sup
f∈BX∗

|f(x)| = ∥x∥ .

Thus, Tx ∈ ℓ∞ and T is an isometric embedding.

Quotients of ℓ1: We start with some preliminaries

Definition 36. Open Mapping Lemma from Math 418. Let T : X −→ Y . If
B◦

Y ⊂ TB◦
X then B◦

Y ⊂ TB◦
X .
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Suppose that Y is a quotient space of X, that is Y = X/Z for some closed
subspace Z of X. Definte Q : X −→ Y be the quotient map. Then QB◦

X = B◦
Y ,

an easy exercise. Conversely suppose that X and Y are Banach spaces and
suppos that there exists a T ∈ L(X,Y ) such that TB◦

X = B◦
Y . Then Y is a

quotient space of X. Another exercise (hint take Z = kerT ). We need one
more fact, that if X is a Banach space and (xn) ⊂ BX is a sequence. Then we
can define a bounded linear operator T : ℓ1 −→ X by Ten = xn, by linearity
extend to the span, and then ∥T

∑
αiei∥ = ∥

∑
αixi∥ ≤

∑
|αi| = ∥

∑
αiei∥ℓ1 so

T is bounded on c00 so extends to a bounded operator T : ℓ1 −→ X.

Theorem 48. Every seperable Banach space is isometrically isomorphic to a
quotient of ℓ1.

Proof. Let X be a seperable Banach space and (xn) be a dense sequence in
BX . As before we find an operator T : ℓ1 −→ X such that Ten = xn. This
operator has norm at most 1. This means that TB◦

ℓ1
⊂ B◦

X . On the other hand

B◦
X ⊂ BX = [xn] ⊂ TBℓ1 = TB◦

ℓ1
. This means that B◦

X = TB◦
ℓ1

and so by X is
a quotient of ℓ1.

1.5 Uniform convexity and smoothness

LetX be a Banach space. We say thatX is strictly convex if ∥x+ y∥ < ∥x∥+∥y∥
as long as x is not in the span of y. X is strictly convex iff every two dimensional
subspace of X is strictly convex. We can reduce the definition to x, y ∈ SX and
therefore all two dimensional spheres.

Lemma 49. X is strictly convex iff for all x, y ∈ SX x ̸= y =⇒
∥∥x+y

2

∥∥ < 1.

Proof. for x, y ∈ SX ∥x+ y∥ < ∥x∥ + ∥y∥ = 2 so
∥∥x+y

2

∥∥ < 1. Now for the
converse if we assume by contradiction that there exists x, y which are not in
each other span but ∥x+ y∥ = ∥x∥+ ∥y∥ . Then WLOG 0 < ∥x∥ ≤ ∥y∥. Then

∥x/ ∥x∥+ y/ ∥x∥∥ ≤ ∥x/ ∥x∥+ y/ ∥y∥∥+ ∥y/ ∥x∥ − y/ ∥y∥∥ ,

where the first factor on the right is ≥ ∥x/ ∥x∥+ y/ ∥y∥∥−∥y/ ∥x∥ − y/ ∥y∥∥ =
∥x+ y∥ / ∥x∥ − ∥y∥ (1/ ∥x∥ − 1/ ∥y∥). This is precisely

∥x∥+ ∥y∥
∥x∥

− ∥y∥
∥x∥

+
∥y∥
∥y∥

= 2,

which is a contradiction.

X is strictly convex iff SX contains no straight line segments iff extBX = SX .
ℓ21 and ℓ2∞ are not strictly convex and thus since failure goes up this means that
neither can L1(µ) or L∞(µ) or c0 or ℓ∞.

If x ∈ SX then by Hahn-Banach Theorem there is f ∈ SX∗ such that
f(x) = 1. If x ∈ SX then we say that x is exposed if there exists f ∈ SX∗ such
that x is the only point of SX such that f(x) = 1.
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Lemma 50. Every exposed point is extreme.

Proof. Let x ∈ SX suppose that x is exposed but not extreme. Then x = αy+βz
where x ̸= y ̸= z ∈ SX and α + β = 1, α, β ≥ 0. Since x is exposed let f be as
above. Then 1 = f(αy + βz) = αf(y) + βf(z), where f(y) < 1 and f(z) < 1 so
αf(y) + βf(z) < α+ β = 1, so 1 < 1.

Corollary 17. X is strictly convex iff every point of SX is exposed.

Proof. Exposed implies extreme implies SX = extBX . On the other hand if X is
strictly convex but not exposed then there exists x ∈ SX which is not exposed.
Take any f ∈ SX∗ such that f(x) = 1 by Hahn-Banach. Since x is not exposed

there exists y ∈ SX such that f(y) = 1. Then f((x+ y)/2) = f(x)
2 + f(y)

2 = 1 so
∥(x+ y)/2∥ ≥ 1 so ∥(x+ y)/2∥ = 1, a contradiction to strict convexity.

Recall, we say that X is uniformly convex if for all ε ∈ (0, 2) and there is
δ > 0 and x, y ∈ SX if ∥x− y∥ ≥ ε then∥∥∥∥x+ y

2

∥∥∥∥ < 1− δ.

It is sufficient to consider x, y ∈ BX and replace ≥ ε with = ε. Uniformly convex
implies strictly convex, while in the finite dimensional case the two concepts
agree. Often we take δ = inf{1 − ∥x+ y∥ 2 : x, y ∈ SX : ∥x− y∥ = ε}. This is
continuous on SX×SX so if X is finite dimensional then the infimum is actually
attained. X is uniformly convex iff for all sequences (xn) and (yn) in BX if∥∥∥∥xn + yn

2

∥∥∥∥ −→ 1

then ∥xn − yn∥ −→ 0.

Theorem 51 (Radon Riesz). If X is uniformly convex and xn −→w x and
∥xn∥ −→ ∥x∥ then xn −→∥ · ∥ x

Proof. If x = 0, done. So wlog x ̸= 0 so ∥x∥ = 1. Then xn/ ∥xn∥ − xn −→∥·∥ 0.
Replacing xn with xn/ ∥xn∥ we may assume ∥xn∥ = 1 for all n. Find f ∈ SX

such that f(x) = 1. Then

f

(
xn + xm

2

)
≤ ∥f∥

∥∥∥∥xn + xm

2

∥∥∥∥ ≤ 1.

On the other hand,

f(xn) + f(xm)

2
−→ f(x) + f(x)

2
= 1.

This means that ∥∥∥∥xn + xm

2

∥∥∥∥ −→ 1,

so ∥xn + xm∥ −→ 0 by uniform convexity. This means xn is Cauchy, so con-
verges, but then by uniqueness of limits we get norm convergence.
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Corollary 18. If X is uniformly convex then X has the Kadec Klee property,
i.e., the norm and weak topology agree on SX .

Proof. Every uniformly convex Banach space is reflexive

Proof. If ξ ∈ X∗∗ then we want to show that ξ = x̂ for some x ∈ X. WLOG
∥ξ∥ = 1. Then Goldstein’s theorem says that BX is w−∗ dense in BX∗∗ so we
find (xα) in BX such that x̂α −→w∗ ξ ∈ X∗∗. Then

1 = ∥ξ∥ ≤ lim inf ∥x̂α∥ = lim inf ∥xα∥

so ∥xα∥ −→ 1. Fix ε > 0 and find δ for uniform convexity. Then find f ∈ SX∗

such that ξ(f) > 1− δ. Then for every α, β we have

f

(
xα + xβ

2

)
=

f(xα) + f(xβ)

2
=

x̂α(f) + x̂β(f)

2
−→ ξ(f) > 1− δ.

Then there exists α0 such that for all α, β ≥ α0 one has

1− δ < f((xα + xβ)/2) ≤ ∥(xα + xβ)/2∥

and thus by the definition of δ this means ∥xα − xβ∥ < ε. Thus xα is Cauchy,
so convergent to some xα −→∥ · ∥ x and thus x̂α −→w∗ x̂ so ξ = x̂.

Here is an example of a Banach space which is strictly convex but not uni-
formly convex. Take X = ℓ1 and equip X with the norm ∥ · ∥ = ∥ · ∥1 + ∥ · ∥2
which is defined since ℓ1 ⊂ ℓ2. Then ∥ · ∥1 ≤ ∥ · ∥ ≤ 2 ∥ · ∥. Thus X ∼= ℓ1 and
since ℓ1 is not reflexive neither can X be. X is strictly convex since

∥x+ y∥ = ∥x+ y∥1 + ∥x+ y∥2 ≤ ∥x1∥+ ∥y∥1 + ∥x+ y∥2 < ∥x∥+ ∥y∥ ,

by the strict convexity of ℓ2.

Our goal is to show that if 1 < p < ∞ then Lp(µ) is uniformly convex. The
case p = 2 is trivial since L2 is a Hilbert space and in a Hilbert space we have
the parallelogram law. For p > 2.

Lemma 52. For all real a, b ∈ R, |a+ b|p + |a− b|p ≤ 2p−1(|a|p + |b|p).

Proof. One has

(|a+ b|p+|a− b|p)1/p ≤ (|a+ b|2+|a− b|2)1/2 = (2(|a|2+|b|2))1/2 = 21/2
(
|a|2 + |b|2

)1/2
,

Then by generalized Holders inequality

≤ 21/2 |1r + 1r|1/r (|a|p + |b|p)1/p = 21/221/2−1/p(|a|p + |b|p)1/p.
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Corollary 19. If 2 < p < ∞ and f, g ∈ Lp(µ) then

(∥f + g∥p + ∥f − g∥p)1/p ≤ 21−1/p(∥f∥p + ∥g∥p)1/p.

Corollary 20. If 2 < p < ∞ then Lp(µ) is uniformly convex.

Proof. If f, g ∈ SLp(µ) with ∥f − g∥ = ε then ∥f + g∥p + εp ≤ 2p−1(1+ 1) = 2p.
Then ∥f + g∥p ≤ 2p − εp and so ∥(f + g)/2∥p ≤ 1− (ε/2)p := 1− δ.

Now we visit the case 1 < p < 2. Take q = p
p−1 = 1

1−1/p . Then q > 2 and

q − 1 = 1
p−1 so (p− 1)(q − 1) = 1.

Lemma 53. For x ∈ [0, 1], (1 + x)q + (1− x)q ≤ 2(1 + xp)q−1.

Proof. For x, α ∈ [0, 1] put f(α, x) = (1+α1−qx)(1+αx)q−1 +(1−α1−qx)(1−
αx)q−1. Then f(1, x) = LHS and f(xp−1, x) = RHS. It suffices to prove that
f(1, x) ≥ f(xp−1, x).
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